Numerical solutions of the time-dependent Schrodinger equation: Reduction of the error due to space discretization

被引:60
作者
Shao, Hezhu [1 ]
Wang, Zhongcheng [1 ]
机构
[1] Shanghai Univ, Dept Phys, Shanghai 200444, Peoples R China
关键词
difference equations; error analysis; mathematical operators; quantum theory; Schrodinger equation;
D O I
10.1103/PhysRevE.79.056705
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We present an improved space-discretization scheme for the numerical solutions of the time-dependent Schrodinger equation. Compared to the scheme of W. van Dijk and F. M. Toyama [Phys. Rev. E 75, 036707 (2007)], the present one, which contains more terms of second-order partial derivatives, greatly reduces the error resulting from the spatial integration. For a (2l+1)-point formula with (2l+1) terms of second-order partial derivatives, the local truncation error can decrease from the order of (Delta x)(2l) to (Delta x)(4l), while the previous one contains only one term of second-order partial derivative. Two well-known numerical examples and the corresponding error analysis demonstrate that the present scheme has an advantage in the precision and efficiency over the previous one.
引用
收藏
页数:6
相关论文
共 14 条
[1]   Quantum abacus [J].
Cheon, T ;
Tsutsui, I ;
Fülöp, T .
PHYSICS LETTERS A, 2004, 330 (05) :338-342
[2]   Frequency doubling of Bloch oscillations for interacting electrons in a static electric field [J].
Dias, W. S. ;
Nascimento, E. M. ;
Lyra, M. L. ;
de Moura, F. A. B. F. .
PHYSICAL REVIEW B, 2007, 76 (15)
[3]   COMPUTER-GENERATED MOTION PICTURES OF 1-DIMENSIONAL QUANTUM-MECHANICAL TRANSMISSION AND REFLECTION PHENOMENA [J].
GOLDBERG, A ;
SCHEY, HM ;
SCHWARTZ, JL .
AMERICAN JOURNAL OF PHYSICS, 1967, 35 (03) :177-&
[4]   SOLVING THE TIME-DEPENDENT SCHRODINGER-EQUATION NUMERICALLY [J].
IITAKA, T .
PHYSICAL REVIEW E, 1994, 49 (05) :4684-4690
[5]   Emission of electromagnetic radiation in α-decay [J].
Misicu, S ;
Rizea, M ;
Greiner, W .
JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS, 2001, 27 (05) :993-1003
[6]   Numerov extension of transparent boundary conditions for the Schrodinger equation in one dimension [J].
Moyer, CA .
AMERICAN JOURNAL OF PHYSICS, 2004, 72 (03) :351-358
[7]  
Press W. H., 2007, Numerical Recipes 3rd Edition: The Art of Scientific Computing
[8]   A high-order accuracy method for numerical solving of the time-dependent Schrodinger equation [J].
Puzynin, IV ;
Selin, AV ;
Vinitsky, SI .
COMPUTER PHYSICS COMMUNICATIONS, 1999, 123 (1-3) :1-6
[9]   Magnus-factorized method for numerical solving the time-dependent Schrodinger equation [J].
Puzynin, IV ;
Selin, AV ;
Vinitsky, SI .
COMPUTER PHYSICS COMMUNICATIONS, 2000, 126 (1-2) :158-161
[10]  
SCHIFF LI, 1949, INT SERIES PURE APPL, P81704