3D printing enables the rapid prototyping of modular microfluidic devices for particle conjugation

被引:46
|
作者
Vasilescu, Steven A. [1 ]
Bazaz, Sajad Razavi [1 ]
Jin, Dayong [3 ,4 ]
Shimoni, Olga [2 ]
Warkiani, Majid Ebrahimi [1 ,3 ,4 ,5 ]
机构
[1] Univ Technol Sydney, Sch Biomed Engn, Sydney, NSW 2007, Australia
[2] Univ Technol Sydney, Sch Math & Phys Sci, Sydney, NSW 2007, Australia
[3] Univ Technol Sydney, Fac Sci, Inst Biomed Mat & Devices IBMD, Sydney, NSW 2007, Australia
[4] Southern Univ Sci & Technol, SUStech UTS Joint Res Ctr Biomed Mat & Devices, Shenzhen 518055, Peoples R China
[5] Sechenov Univ, Inst Mol Med, Moscow 119991, Russia
基金
澳大利亚研究理事会; 澳大利亚国家健康与医学研究理事会; 英国医学研究理事会;
关键词
3D printing method; 3D micromixer; Antibody conjugation; Microfluidics; Rapid prototyping;
D O I
10.1016/j.apmt.2020.100726
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Antibody micro/nano-particle conjugates have proven to be essential tools in many diagnostic and nanomedicine applications. However, their production with homogenous coating and in a continuous fashion remains a tedious, labor-intensive, and costly process. In this regard, 3D micromixer-based microfluidic devices offer significant advantages over existing methods, where manipulating the flow in three dimensions increases fluid contact area and surface disruption, facilitating efficient mixing. While conventional softlithography is capable of fabricating simple 2D micromixers, complications arise when processing 3D structures. In this paper, we report the direct fabrication of a 3D complex microchannel design using additive manufacturing for the continuous conjugation of antibodies onto particle surfaces. This method benefits from a reduction in cost and time (from days to hours), simplified fabrication process, and limited post-processing. The flexibility of direct 3D printing allows quick and easy tailoring of design features to facilitate the production of micro and nanoparticles conjugated with functional antibodies in a continuous mixing process. We demonstrate that the produced antibody-functionalized particles retain their functionality by a firm and specific interaction with antigen presenting cells. By connecting 3D printed micromixers across the conjugation process, we illustrate the role of 3D printed microchannels as modularized components. The 3D printing method we report enables a broad spectrum of researchers to produce complex microfluidic geometries within a short time frame. (c) 2020 Elsevier Ltd. All rights reserved.
引用
收藏
页数:10
相关论文
共 50 条
  • [11] Highly Fluorinated Methacrylates for Optical 3D Printing of Microfluidic Devices
    Kotz, Frederik
    Risch, Patrick
    Helmer, Dorothea
    Rapp, Bastian E.
    MICROMACHINES, 2018, 9 (03):
  • [12] 3D Rapid Prototyping Technology (RPT) as a powerful tool in microfluidic development
    Bonyar, Attila
    Santha, Hunor
    Ring, Balazs
    Varga, Mate
    Kovacs, Jozsef Gabor
    Harsanyi, Gabor
    EUROSENSORS XXIV CONFERENCE, 2010, 5 : 291 - 294
  • [13] Rapid prototyping of electrically conductive components using 3D printing technology
    Czyzewski, J.
    Burzynski, P.
    Gawel, K.
    Meisner, J.
    JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, 2009, 209 (12-13) : 5281 - 5285
  • [14] Direct metal printing of 3D electrical circuit using rapid prototyping
    Min-Saeng Kim
    Won-Shik Chu
    Yun-Mi Kim
    Adrian Paulo Garcia Avila
    Sung-Hoon Ahn
    International Journal of Precision Engineering and Manufacturing, 2009, 10 : 147 - 150
  • [15] Direct metal printing of 3D electrical circuit using rapid prototyping
    Kim, Min-Saeng
    Chu, Won-Shik
    Kim, Yun-Mi
    Avila, Adrian Paulo Garcia
    Ahn, Sung-Hoon
    INTERNATIONAL JOURNAL OF PRECISION ENGINEERING AND MANUFACTURING, 2009, 10 (05) : 147 - 150
  • [16] Microplasma fabrication: from semiconductor technology for 2D-chips and microfluidic channels to rapid prototyping and 3D-printing of microplasma devices
    Shatford, Ryan
    Karanassios, Vassili
    ADVANCED ENVIRONMENTAL, CHEMICAL, AND BIOLOGICAL SENSING TECHNOLOGIES XI, 2014, 9106
  • [17] Inkjet 3D Printed Microfluidic Devices
    Adamski, Krzysztof
    Kubicki, Wojciech
    Walczak, Rafal
    PROCEEDINGS OF THE 23RD INTERNATIONAL CONFERENCE ON MIXED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS (MIXDES 2016), 2016, : 504 - 506
  • [18] Biofunctional rapid prototyping for tissue-engineering applications:: 3D bioplotting versus 3D printing
    Pfister, A
    Landers, R
    Laib, A
    Hübner, U
    Schmelzeisen, R
    Mülhaupt, R
    JOURNAL OF POLYMER SCIENCE PART A-POLYMER CHEMISTRY, 2004, 42 (03) : 624 - 638
  • [19] 3D Printing of Monolithic Capillarity-Driven Microfluidic Devices for Diagnostics
    Achille, Clement
    Parra-Cabrera, Cesar
    Dochy, Ruben
    Ordutowski, Henry
    Piovesan, Agnese
    Piron, Pieter
    Van Looy, Lore
    Kushwaha, Shashwat
    Reynaerts, Dominiek
    Verboven, Pieter
    Nicolai, Bart
    Lammertyn, Jeroen
    Spasic, Dragana
    Ameloot, Rob
    ADVANCED MATERIALS, 2021, 33 (25)
  • [20] Rapid Prototyping of Ultrawideband Compact Resonant Cavity Antennas Using 3D Printing
    Hayat, Touseef
    Afzal, Muhammad U.
    Ahmed, Foez
    Esselle, Karu P.
    2021 IEEE ASIA-PACIFIC MICROWAVE CONFERENCE (APMC), 2021, : 169 - 171