NTM-Lung Disease: Machine Learning identifies undiagnosed Patients

被引:0
|
作者
Manych, Matthias
机构
来源
PNEUMOLOGIE | 2020年 / 74卷 / 12期
关键词
D O I
10.1055/a-1210-5352
中图分类号
R56 [呼吸系及胸部疾病];
学科分类号
摘要
Die nichttuberkulose mykobakterielle (NTM) Lungenerkrankung ist insgesamt selten, ihre Inzidenz und Pravalenz nehmen aber zu. Aktuell wird die jahrliche Pravalenz in Europa auf 3,3-6 Falle pro 100000 geschatzt. Die Identifizierung von Patienten mit NTM-Lungenerkrankung konnte durch die Anwendung kunstlicher Intelligenz (KI) verbessert werden, wie eine Studie fur das United Kingdom belegt.
引用
收藏
页数:1
相关论文
共 50 条
  • [31] Nontuberculous mycobacterial (NTM) lung disease: The top ten essentials
    Aksamit, Timothy R.
    Philley, Julie V.
    Griffith, David E.
    RESPIRATORY MEDICINE, 2014, 108 (03) : 417 - 425
  • [32] Lung Disease Detection Using Machine Learning Approach
    Batra, Neera
    Goyal, Sonali
    Chhabra, Kritika
    INTERNATIONAL CONFERENCE ON INNOVATIVE COMPUTING AND COMMUNICATIONS, ICICC 2022, VOL 1, 2023, 473 : 251 - 260
  • [33] Complexities of the Lower Airway Microbiome in Bronchiectasis and NTM Lung Disease
    Singh, S.
    Collazo, D. E.
    Krolikowski, K.
    Atandi, I.
    Wong, K.
    Erlandson, K.
    Kwok, B.
    Barnett, C. R.
    Li, Y.
    Chang, M.
    Schluger, R.
    Kocak, I. F.
    Singh, R.
    McCormick, C.
    Kyeremateng, Y.
    Darawshy, F.
    Kugler, M.
    Sulaiman, I.
    Tsay, J. J.
    Basavaraj, A.
    Kamelhar, D.
    Addrizzo-Harris, D. J.
    Segal, L. N.
    Wu, B. G.
    AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE, 2023, 207
  • [34] Using Machine Learning to Improve Screening for Undiagnosed Diabetes among Emergency Department Patients
    Bohart, Isaac
    Caldwell, J. Reed
    Swartz, Jordan
    Rosen, Perry E.
    Genes, Nicholas
    Koziatek, Christian A.
    Neill, Daniel B.
    Lee, David C.
    DIABETES, 2022, 71
  • [35] Interpretable Machine Learning Identifies Risk Predictors in Patients With Heart Failure
    Zame, William
    Yoon, Jinsung
    Asselbergs, Folkert
    Van der Schaar, Michaela
    CIRCULATION, 2018, 138
  • [36] Machine Learning Methodology Identifies Predictors of a Cardiovascular Composite Measure Among Severe Peripheral Artery Disease Patients
    Ting, Windsor
    Haskell, Lloyd
    Lurie, Fedor
    Berger, Jeffrey S.
    Eapen, Zubin
    Valko, Matthew
    Alas, Veronica
    Rich, Kelly
    Crivera, Concetta
    Schein, Jeff
    CIRCULATION, 2016, 134
  • [37] Machine Learning Methodology Identifies Predictors of a Cardiovascular Composite Measure Among Severe Peripheral Artery Disease Patients
    Ting, Windsor
    Haskell, Lloyd
    Lurie, Fedor
    Berger, Jeffrey S.
    Eapen, Zubin
    Valko, Matthew
    Alas, Veronica
    Rich, Kelly
    Crivera, Concetta
    Schein, Jeff
    CIRCULATION, 2016, 134
  • [38] A machine learning model accurately identifies glycogen storage disease Ia patients based on plasma acylcarnitine profiles
    Groen, Joost
    de Haan, Bas M.
    Overduin, Ruben J.
    Haijer-Schreuder, Andrea B.
    Derks, Terry G. J.
    Heiner-Fokkema, M. Rebecca
    ORPHANET JOURNAL OF RARE DISEASES, 2025, 20 (01)
  • [39] Machine learning identifies signatures of macrophage reactivity and tolerance that predict disease outcomes
    Ghosh, Pradipta
    Sinha, Saptarshi
    Katkar, Gajanan D.
    Vo, Daniella
    Taheri, Sahar
    Dang, Dharanidhar
    Das, Soumita
    Sahoo, Debashis
    EBIOMEDICINE, 2023, 94
  • [40] Successful NTM Eradication and Lung Transplantation in Pediatric CF Patients
    Si, X.
    Burton, C.
    Vanderkooi, O. G.
    McKinney, M.
    Lien, D.
    Avdimiretz, N.
    JOURNAL OF HEART AND LUNG TRANSPLANTATION, 2024, 43 (04): : S636 - S636