On the quantitative subspace theorem

被引:1
|
作者
Giang Le [1 ]
机构
[1] Hanoi Natl Univ Educ, Dept Math, Hanoi, Vietnam
关键词
Diophantine approximation; Subspace theorem; EQUATIONS;
D O I
10.1016/j.jnt.2014.06.009
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In 2008, Evertse and Ferretti stated a quantitative version of the Subspace Theorem for a projective variety with higher degree polynomials instead of linear forms. Our goal is to generalize their results. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:474 / 495
页数:22
相关论文
共 50 条
  • [41] A FRAMEWORK FOR DEFLATED AND AUGMENTED KRYLOV SUBSPACE METHODS
    Gaul, Andre
    Gutknecht, Martin H.
    Liesen, Joerg
    Nabben, Reinhard
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2013, 34 (02) : 495 - 518
  • [42] Subspace Design of Compactly Supported Orthonormal Wavelets
    Mansour, Mohamed F.
    JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2014, 20 (01) : 66 - 90
  • [43] Extrapolation methods as nonlinear Krylov subspace methods
    McCoid, Conor
    Gander, Martin J.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2024, 693 : 83 - 97
  • [44] IDR: A new generation of Krylov subspace methods?
    Rendel, Olaf
    Rizvanolli, Anisa
    Zemke, Jens-Peter M.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2013, 439 (04) : 1040 - 1061
  • [45] A decomposition theorem for neutrices
    van den Berg, Imme
    ANNALS OF PURE AND APPLIED LOGIC, 2010, 161 (07) : 851 - 865
  • [46] A Minkowski Theorem for Quasicrystals
    Guiheneuf, Pierre-Antoine
    Joly, Emilien
    DISCRETE & COMPUTATIONAL GEOMETRY, 2017, 58 (03) : 596 - 613
  • [47] REMARKS ON THE CLARK THEOREM
    Jiang, Guosheng
    Tanaka, Kazunaga
    Zhang, Chengxiang
    JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2017, 18 (08) : 1421 - 1434
  • [48] ON A GENERALIZATION OF A THEOREM OF POPOV
    Huang, Jing-Jing
    Li, Huixi
    HOUSTON JOURNAL OF MATHEMATICS, 2020, 46 (01): : 27 - 38
  • [49] On the Nagumo uniqueness theorem
    Mustafa, Octavian G.
    O'Regan, Donal
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2011, 74 (17) : 6383 - 6386
  • [50] An intermittent Onsager theorem
    Novack, Matthew
    Vicol, Vlad
    INVENTIONES MATHEMATICAE, 2023, 233 (01) : 223 - 323