Arbuscular mycorrhizal fungi increase salt tolerance of apple seedlings

被引:32
|
作者
Yang, Shou-Jun [1 ]
Zhang, Zhong-Lan [1 ]
Xue, Yuan-Xia [1 ]
Zhang, Zhi-Fen [1 ]
Shi, Shu-Yi [1 ]
机构
[1] China Agr Univ, Yantai Inst, Coll Sci & Technol, Yantai 264670, Peoples R China
关键词
Arbuscular mycorrhizal fungi; Inoculation; Salinity; Apple seedling; Physiological characteristic; WATER RELATIONS; SALINE SOILS; PLANT-GROWTH; STRESS; DROUGHT; ROOTS; SALINIZATION; TRANSPORT; SYMBIOSIS;
D O I
10.1186/s40529-014-0070-6
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Background: Apple trees are often subject to severe salt stress in China as well as in the world that results in significant loss of apple production. Therefore this study was carried out to evaluate the response of apple seedlings inoculated with abuscular mycorrhizal fungi under 0, 2aEuro degrees, 4aEuro degrees and 6aEuro degrees salinity stress levels and further to conclude the upper threshold of mycorrhizal salinity tolerance. Results: The results shows that abuscular mycorrhizal fungi significantly increased the root length colonization of mycorrhizal apple plants with exposure time period to 0, 2aEuro degrees and 4aEuro degrees salinity levels as compared to non-mycorrhizal plants, however, percent root colonization reduced as saline stress increased. Salinity levels were found to negatively correlate with leaf relative turgidity, osmotic potential irrespective of non-mycorrhizal and mycorrhizal apple plants, but the decreased mycorrhizal leaf turgidity maintained relative normal values at 2aEuro degrees and 4aEuro degrees salt concentrations. Under salt stress condition, Cl- and Na+ concentrations clearly increased and K+ contents obviously decreased in non-mycorrhizal roots in comparison to mycorrhizal plants, this caused mycorrhizal plants had a relatively higher K+/Na+ ratio in root. In contrast to zero salinity level, although ascorbate peroxidase and catalase activities in non-inoculated and inoculated leaf improved under all saline levels, the extent of which these enzymes increased was greater in mycorrhizal than in non-mycorrhizal plants. The numbers of survived tree with non-mycorrhization were 40, 20 and 0 (i.e., 66.7%, 33.3% and 0) on the days of 30, 60 and 90 under 4aEuro degrees salinity, similarly in mycorrhization under 6aEuro degrees salinity 40, 30 and 0 (i.e., 66.7%, 50% and 0) respectively. Conclusion: These results suggest that 2aEuro degrees and 4aEuro degrees salt concentrations may be the upper thresholds of salinity tolerance in non-mycorrhizal and mycorrhizal apple plants, respectively.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] Dopamine and arbuscular mycorrhizal fungi act synergistically to promote apple growth under salt stress
    Gao, Tengteng
    Liu, Xiaomin
    Shan, Lei
    Wu, Qian
    Liu, Yuan
    Zhang, Zhijun
    Ma, Fengwang
    Li, Chao
    ENVIRONMENTAL AND EXPERIMENTAL BOTANY, 2020, 178
  • [22] Arbuscular mycorrhizal fungi enhanced salt tolerance of Gleditsia sinensis by modulating antioxidant activity, ion balance and P/N ratio
    Wang, Jinping
    Yuan, Jihong
    Ren, Qiong
    Zhang, Bo
    Zhang, Jinchi
    Huang, Rongzhen
    Wang, G. Geoff
    PLANT GROWTH REGULATION, 2022, 97 (01) : 33 - 49
  • [23] Arbuscular mycorrhizal fungi inoculation impacts expression of aquaporins and salt overly sensitive genes and enhances tolerance of salt stress in tomato
    Liu, Ming-Yang
    Li, Qiu-Shuang
    Ding, Wan-Yu
    Dong, Li-Wei
    Deng, Min
    Chen, Jia-Hui
    Tian, Xiao
    Hashem, Abeer
    Al-Arjani, Al-Bandari Fahad
    Alenazi, Mekhled M.
    Abd-Allah, Elsayed Fathi
    Wu, Qiang-Sheng
    CHEMICAL AND BIOLOGICAL TECHNOLOGIES IN AGRICULTURE, 2023, 10 (01)
  • [24] Contributions of arbuscular mycorrhizal fungi to growth, photosynthesis, root morphology and ionic balance of citrus seedlings under salt stress
    Wu, Qiang-Sheng
    Zou, Ying-Ning
    He, Xin-Hua
    ACTA PHYSIOLOGIAE PLANTARUM, 2010, 32 (02) : 297 - 304
  • [25] Arbuscular mycorrhizal fungi in alleviation of salt stress: a review
    Evelin, Heikham
    Kapoor, Rupam
    Giri, Bhoopander
    ANNALS OF BOTANY, 2009, 104 (07) : 1263 - 1280
  • [26] Arbuscular mycorrhizal fungi improve the growth and drought tolerance of Cinnamomum migao by enhancing physio-biochemical responses
    Yan, Qiuxiao
    Li, Xiangying
    Xiao, Xuefeng
    Chen, Jingzhong
    Liu, Jiming
    Lin, Changhu
    Guan, Ruiting
    Wang, Daoping
    ECOLOGY AND EVOLUTION, 2022, 12 (07):
  • [27] Synergistic effect of colonization with arbuscular mycorrhizal fungi improves growth and drought tolerance of Plukenetia volubilis seedlings
    Tian, Yao-hua
    Lei, Yan-bao
    Zheng, Yu-long
    Cai, Zhi-quan
    ACTA PHYSIOLOGIAE PLANTARUM, 2013, 35 (03) : 687 - 696
  • [28] The role of arbuscular mycorrhizal fungi in alleviating salt stress in Medicago sativa L. var. icon
    Campanelli, Angela
    Ruta, Claudia
    De Mastro, Giuseppe
    Morone-Fortunato, Irene
    SYMBIOSIS, 2013, 59 (02) : 65 - 76
  • [29] Arbuscular Mycorrhizal Fungi as Biofertilizers to Increase the Plant Quality of Sour-Orange Seedlings
    Navarro, Josefa Maria
    Morte, Asuncion
    Wu, Fuyong
    AGRONOMY-BASEL, 2024, 14 (01):
  • [30] Functions of arbuscular mycorrhizal fungi in horticultural crops
    Zhu, Bolin
    Gao, Tengteng
    Zhang, Danni
    Ding, Ke
    Li, Chao
    Ma, Fengwang
    SCIENTIA HORTICULTURAE, 2022, 303