An improved teaching-learning-based optimization for constrained evolutionary optimization

被引:36
作者
Wang, Bing-Chuan [1 ]
Li, Han-Xiong [1 ,2 ]
Feng, Yun [1 ]
机构
[1] City Univ Hong Kong, Dept Syst Engn & Engn Management, Hong Kong, Hong Kong, Peoples R China
[2] Cent South Univ, Sch Mech & Elect Engn, State Key Lab High Performance Complex Mfg, Changsha, Hunan, Peoples R China
关键词
Constrained optimization; TLBO; Tradeoff; Diversity; Convergence; Constraints; Objective function; DIFFERENTIAL EVOLUTION; BEE COLONY; FLOW-SHOP; ALGORITHM; STRATEGY; DESIGN;
D O I
10.1016/j.ins.2018.04.083
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
When extending a global optimization technique for constrained optimization, we must balance not only diversity and convergence but also constraints and objective function. Based on these two criteria, the famous teaching-learning-based optimization (TLBO) is improved for constrained optimization. To balance diversity and convergence, an efficient subpopulation based teacher phase is designed to enhance diversity, while a ranking differential-vector-based learner phase is proposed to promote convergence. In addition, how to select the teacher in the teacher phase and how to rank two solutions in the learner phase have a significant impact on the tradeoff between constraints and objective function. To address this issue, a dynamic weighted sum is formulated. Furthermore, a simple yet effective restart strategy is proposed to settle complicated constraints. By adopting the epsilon constraint-handling technique as the constraint-handling technique, a constrained optimization evolutionary algorithm, i.e., improved TLBO (ITLBO), is proposed. Experiments on a broad range of benchmark test functions reveal that ITLBO shows better or at least competitive performance against other constrained TLBOs and some other constrained optimization evolutionary algorithms. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:131 / 144
页数:14
相关论文
共 50 条
  • [31] A parallel Teaching-Learning-Based Optimization procedure for automatic heliostat aiming
    Cruz, N. C.
    Redondo, J. L.
    Alvarez, J. D.
    Berenguel, M.
    Ortigosa, P. M.
    JOURNAL OF SUPERCOMPUTING, 2017, 73 (01) : 591 - 606
  • [32] Competitive teaching-learning-based optimization for multimodal optimization problems
    Chi, Aining
    Ma, Maode
    Zhang, Yiying
    Jin, Zhigang
    SOFT COMPUTING, 2022, 26 (19) : 10163 - 10186
  • [33] Chaotic Teaching-Learning-Based Optimization with Levy Flight for Global Numerical Optimization
    He, Xiangzhu
    Huang, Jida
    Rao, Yunqing
    Gao, Liang
    COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE, 2016, 2016
  • [34] Quadratic interpolation based teaching-learning-based optimization for chemical dynamic system optimization
    Chen, Xu
    Mei, Congli
    Xu, Bin
    Yu, Kunjie
    Huang, Xiuhui
    KNOWLEDGE-BASED SYSTEMS, 2018, 145 : 250 - 263
  • [35] A note on teaching-learning-based optimization algorithm
    Crepinsek, Matej
    Liu, Shih-Hsi
    Mernik, Luka
    INFORMATION SCIENCES, 2012, 212 : 79 - 93
  • [36] CTLBO: Converged teaching-learning-based optimization
    Mahmoodabadi, M. J.
    Ostadzadeh, R.
    COGENT ENGINEERING, 2019, 6 (01):
  • [37] Teaching-Learning-Based Optimization Enhanced With Multiobjective Sorting Based and Cooperative Learning
    Li, Wei
    Fan, Yaochi
    Xu, Qingzheng
    IEEE ACCESS, 2020, 8 : 65923 - 65937
  • [38] A Novel Improved Teaching-Learning Based Optimization for Functional Optimization
    Qu, Xinghua
    Liu, Bo
    Li, Zhengyang
    Duan, Wenzhe
    Zhang, Ran
    Zhang, Wei
    Li, Huifeng
    2016 12TH IEEE INTERNATIONAL CONFERENCE ON CONTROL AND AUTOMATION (ICCA), 2016, : 939 - 943
  • [39] Data Clustering Based on Teaching-Learning-Based Optimization
    Satapathy, Suresh Chandra
    Naik, Anima
    SWARM, EVOLUTIONARY, AND MEMETIC COMPUTING, PT II, 2011, 7077 : 148 - +
  • [40] Constrained Nonlinear Predictive Control Using Neural Networks and Teaching-Learning-Based Optimization
    Benrabah, Mohamed
    Kara, Kamel
    AitSahed, Oussama
    Hadjili, Mohamed Laid
    JOURNAL OF CONTROL AUTOMATION AND ELECTRICAL SYSTEMS, 2021, 32 (05) : 1228 - 1243