Analysing chaos in fractional-order systems with the harmonic balance method

被引:0
作者
Wu Zheng-Mao [1 ]
Lu Jun-Guo [1 ]
Xie Jian-Ying [1 ]
机构
[1] Shanghai Jiao Tong Univ, Dept Automat, Shanghai 200030, Peoples R China
来源
CHINESE PHYSICS | 2006年 / 15卷 / 06期
关键词
fractional-order system; harmonic balance principle; Genesio-Tesi system; chaos; Lur'e system;
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, the fractional-order Genesio-Tesi system showing chaotic behaviours is introduced, and the corresponding one in an integer-order form is studied intensively. Based on the harmonic balance principle, which is widely used in the frequency analysis of nonlinear control systems, a theoretical approach is used to investigate the conditions of system parameters under which this fractional-order system can give rise to a chaotic attractor. Finally, the numerical simulation is used to verify the validity of the theoretical results.
引用
收藏
页码:1201 / 1207
页数:7
相关论文
共 50 条
[41]   Bifurcation and chaos of a new discrete fractional-order logistic map [J].
Ji, YuanDong ;
Lai, Li ;
Zhong, SuChuan ;
Zhang, Lu .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2018, 57 :352-358
[42]   Fractional-order Chua's system: discretization, bifurcation and chaos [J].
Agarwal, Ravi P. ;
El-Sayed, Ahmed M. A. ;
Salman, Sanaa M. .
ADVANCES IN DIFFERENCE EQUATIONS, 2013,
[43]   Chaos in the fractional-order Volta's system: modeling and simulation [J].
Petras, Ivo .
NONLINEAR DYNAMICS, 2009, 57 (1-2) :157-170
[44]   A novel identification method for fractional-order wiener systems with PRBS input [J].
Safarinejadian, Behrooz ;
Kianpour, Nasrin ;
Asad, Mojtaba .
2016 4TH INTERNATIONAL CONFERENCE ON CONTROL, INSTRUMENTATION, AND AUTOMATION (ICCIA), 2016, :290-295
[45]   Passivity-based fractional-order integral sliding-mode control design for uncertain fractional-order nonlinear systems [J].
Dadras, Sara ;
Momeni, Hamid Reza .
MECHATRONICS, 2013, 23 (07) :880-887
[46]   Stability Region of Fractional-Order PIλDμ Controller for Fractional-Order Systems with Time Delay [J].
Wu, Qunhong ;
Ou, Linlin ;
Ni, Hongjie ;
Zhang, Weidong .
2012 12TH INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION, ROBOTICS & VISION (ICARCV), 2012, :1767-1772
[47]   Fractional-order iterative learning control for fractional-order systems with initialization non-repeatability [J].
Xu, Xiaofeng ;
Chen, Jinshui ;
Lu, Jiangang .
ISA TRANSACTIONS, 2023, 143 :271-285
[49]   Adaptive Control for Fractional-order Interconnected Systems [J].
Liang, Bingyun ;
Zheng, Shiqi ;
Yang, Zichao ;
Liu, Feng .
PROCEEDINGS OF THE 38TH CHINESE CONTROL CONFERENCE (CCC), 2019, :2582-2587
[50]   Hidden chaotic attractors in fractional-order systems [J].
Marius-F. Danca .
Nonlinear Dynamics, 2017, 89 :577-586