Analysing chaos in fractional-order systems with the harmonic balance method

被引:0
作者
Wu Zheng-Mao [1 ]
Lu Jun-Guo [1 ]
Xie Jian-Ying [1 ]
机构
[1] Shanghai Jiao Tong Univ, Dept Automat, Shanghai 200030, Peoples R China
来源
CHINESE PHYSICS | 2006年 / 15卷 / 06期
关键词
fractional-order system; harmonic balance principle; Genesio-Tesi system; chaos; Lur'e system;
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, the fractional-order Genesio-Tesi system showing chaotic behaviours is introduced, and the corresponding one in an integer-order form is studied intensively. Based on the harmonic balance principle, which is widely used in the frequency analysis of nonlinear control systems, a theoretical approach is used to investigate the conditions of system parameters under which this fractional-order system can give rise to a chaotic attractor. Finally, the numerical simulation is used to verify the validity of the theoretical results.
引用
收藏
页码:1201 / 1207
页数:7
相关论文
共 50 条
[21]   Chaos and chaotic control in a fractional-order electronic oscillator [J].
Gao, X ;
Yu, JB .
CHINESE PHYSICS, 2005, 14 (05) :908-913
[22]   BIFURCATIONS AND CHAOS IN FRACTIONAL-ORDER SIMPLIFIED LORENZ SYSTEM [J].
Sun, Kehui ;
Wang, Xia ;
Sprott, J. C. .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2010, 20 (04) :1209-1219
[23]   Using fractional-order integrator to control chaos in single-input chaotic systems [J].
Mohammad Saleh Tavazoei ;
Mohammad Haeri ;
Sadegh Bolouki ;
Milad Siami .
Nonlinear Dynamics, 2009, 55 :179-190
[24]   Using fractional-order integrator to control chaos in single-input chaotic systems [J].
Tavazoei, Mohammad Saleh ;
Haeri, Mohammad ;
Bolouki, Sadegh ;
Siami, Milad .
NONLINEAR DYNAMICS, 2009, 55 (1-2) :179-190
[25]   Chaotic dynamics and synchronization of fractional-order Genesio-Tesi systems [J].
Lu, JG .
CHINESE PHYSICS, 2005, 14 (08) :1517-1521
[26]   Robust Stabilization of Fractional-Order Systems with Interval Uncertainties via Fractional-Order Controllers [J].
Delshad, Saleh Sayyad ;
Asheghan, Mohammad Mostafa ;
Beheshti, Mohammadtaghi Hamidi .
ADVANCES IN DIFFERENCE EQUATIONS, 2010,
[27]   Stability Analysis of a Class of Nonlinear Fractional-Order Systems [J].
Wen, Xiang-Jun ;
Wu, Zheng-Mao ;
Lu, Jun-Guo .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2008, 55 (11) :1178-1182
[28]   Chaos and Adaptive Control of the Fractional-Order Magnetic-Field Electromechanical Transducer [J].
Luo, Shaohua ;
Li, Shaobo ;
Tajaddodianfar, Farid .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2017, 27 (13)
[29]   Dissipativity and contractivity for fractional-order systems [J].
Wang, Dongling ;
Xiao, Aiguo .
NONLINEAR DYNAMICS, 2015, 80 (1-2) :287-294
[30]   Parallel simulations for Fractional-Order Systems [J].
Baban, Andrada ;
Bonchis, Cosmin ;
Fikl, Alexandru ;
Rosu, Florin .
PROCEEDINGS OF 2016 18TH INTERNATIONAL SYMPOSIUM ON SYMBOLIC AND NUMERIC ALGORITHMS FOR SCIENTIFIC COMPUTING (SYNASC), 2016, :137-140