Multicenter assessment of microbial community profiling using 16S rRNA gene sequencing and shotgun metagenomic sequencing

被引:43
作者
Han, Dongsheng [1 ,2 ,3 ,4 ]
Gao, Peng [1 ,2 ,3 ,4 ]
Li, Rui [1 ,2 ,3 ,4 ]
Tan, Ping [1 ,2 ,3 ,4 ]
Xie, Jiehong [1 ,2 ,4 ]
Zhang, Rui [1 ,2 ,4 ]
Li, Jinming [1 ,2 ,3 ,4 ]
机构
[1] Beijing Hosp, Natl Ctr Clin Labs, Natl Ctr Gerontol, Beijing 100005, Peoples R China
[2] Chinese Acad Med Sci, Inst Geriatr Med, Beijing 100005, Peoples R China
[3] Chinese Acad Med Sci, Peking Union Med Coll, Grad Sch, Beijing 100730, Peoples R China
[4] Beijing Hosp, Beijing Engn Res Ctr, Lab Med, Beijing 100005, Peoples R China
基金
中国国家自然科学基金;
关键词
Shotgun metagenomic sequencing; 16S rRNA gene sequencing; Microbial community profiling; Microbiome; Microbiota; GUT MICROBIOTA; WIDE ASSOCIATION; AMPLICON; OBESITY; FOCUS;
D O I
10.1016/j.jare.2020.07.010
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Introduction: Microbiome research based on high-throughput sequencing has grown exponentially in recent years, but methodological variations can easily undermine the reproducibility across studies. Objectives: To systematically evaluate the comparability of sequencing results of 16S rRNA gene sequencing (16Ss)- and shotgun metagenomic sequencing (SMs)-based microbial community profiling in laboratories under routine conditions. Methods: We designed a multicenter study across 35 participating laboratories in China using designed mock communities and homogenized fecal samples. Results: A wide range of practices and approaches was reported by the participating laboratories. The observed microbial compositions of the mock communities in 46.2% (12/26) of the 16Ss and 82.6% (19/23) of the SMs laboratories had significant correlations with the expected result (Spearman r>0.59, P <0.05). The results from laboratories with near-identical protocols showed slight interlaboratory deviations. However, a high degree of interlaboratory deviation was found in the observed abundances of specific taxa, such as Bacteroides spp. (range: 0.3%-53.5%), Enterococci spp. (range: 0.8%-43.9%) and Fusobacterium spp. (range: 0.1%-39.8%). SMs performed better than 16Ss in detecting low-abundance bacteria (B. bifidum). The differences in DNA extraction methods, amplified regions and bioinformatics analysis tools (taxonomic classifiers and database) were important factors causing interlaboratory deviations. Addressing laboratory contamination is an urgent task because various sources of unexpected microbes were found in negative control samples. Conclusions: Well-defined control samples, such as the mock communities in this study, should be routinely used in microbiome research for monitoring potential biases. The findings in this study will provide guidance in the choice of more reasonable operating procedures to minimize potential methodological biases in revealing human microbiota composition. (C) 2020 The Authors. Published by Elsevier B.V. on behalf of Cairo University.
引用
收藏
页码:111 / 121
页数:11
相关论文
共 66 条
[1]   Bringing the gut microbiota into focus through microbial culture: recent progress and future perspective [J].
Allen-Vercoe, Emma .
CURRENT OPINION IN MICROBIOLOGY, 2013, 16 (05) :625-629
[2]   Impact of library preparation protocols and template quantity on the metagenomic reconstruction of a mock microbial community [J].
Bowers, Robert M. ;
Clum, Alicia ;
Tice, Hope ;
Lim, Joanne ;
Singh, Kanwar ;
Ciobanu, Doina ;
Ngan, Chew Yee ;
Cheng, Jan-Fang ;
Tringe, Susannah G. ;
Woyke, Tanja .
BMC GENOMICS, 2015, 16
[3]   The truth about metagenomics: quantifying and counteracting bias in 16S rRNA studies [J].
Brooks, J. Paul ;
Edwards, David J. ;
Harwich, Michael D., Jr. ;
Rivera, Maria C. ;
Fettweis, Jennifer M. ;
Serrano, Myrna G. ;
Reris, Robert A. ;
Sheth, Nihar U. ;
Huang, Bernice ;
Girerd, Philippe ;
Strauss, Jerome F., III ;
Jefferson, Kimberly K. ;
Buck, Gregory A. .
BMC MICROBIOLOGY, 2015, 15
[4]   Fast and sensitive protein alignment using DIAMOND [J].
Buchfink, Benjamin ;
Xie, Chao ;
Huson, Daniel H. .
NATURE METHODS, 2015, 12 (01) :59-60
[5]   Alteration of the gut microbiota associated with childhood obesity by 16S rRNA gene sequencing [J].
Chen, Xiaowei ;
Sun, Haixiang ;
Jiang, Fei ;
Shen, Yan ;
Li, Xin ;
Hu, Xueju ;
Shen, Xiaobing ;
Wei, Pingmin .
PEERJ, 2020, 8
[6]   Impact of Preservation Method and 16S rRNA Hypervariable Region on Gut Microbiota Profiling [J].
Chen, Zigui ;
Hui, Pak Chun ;
Hui, Mamie ;
Yeoh, Yun Kit ;
Wong, Po Yee ;
Chan, Martin C. W. ;
Wong, Martin C. S. ;
Ng, Siew C. ;
Chan, Francis K. L. ;
Chan, Paul K. S. .
MSYSTEMS, 2019, 4 (01)
[7]   Towards standards for human fecal sample processing in metagenomic studies [J].
Costea, Paul I. ;
Zeller, Georg ;
Sunagawa, Shinichi ;
Pelletier, Eric ;
Alberti, Adriana ;
Levenez, Florence ;
Tramontano, Melanie ;
Driessen, Marja ;
Hercog, Rajna ;
Jung, Ferris-Elias ;
Kultima, Jens Roat ;
Hayward, Matthew R. ;
Coelho, Luis Pedro ;
Allen-Vercoe, Emma ;
Bertrand, Laurie ;
Blaut, Michael ;
Brown, Jillian R. M. ;
Carton, Thomas ;
Cools-Portier, Stephanie ;
Daigneault, Michelle ;
Derrien, Muriel ;
Druesne, Anne ;
de Vos, Willem M. ;
Finlay, B. Brett ;
Flint, Harry J. ;
Guarner, Francisco ;
Hattori, Masahira ;
Heilig, Hans ;
Luna, Ruth Ann ;
Vlieg, Johan van Hylckama ;
Junick, Jana ;
Klymiuk, Ingeborg ;
Langella, Philippe ;
Le Chatelier, Emmanuelle ;
Mai, Volker ;
Manichanh, Chaysavanh ;
Martin, Jennifer C. ;
Mery, Clementine ;
Morita, Hidetoshi ;
O'Toole, Paul W. ;
Orvain, Celine ;
Patil, Kiran Raosaheb ;
Penders, John ;
Persson, Soren ;
Pons, Nicolas ;
Popova, Milena ;
Salonen, Anne ;
Saulnier, Delphine ;
Scott, Karen P. ;
Singh, Bhagirath .
NATURE BIOTECHNOLOGY, 2017, 35 (11) :1069-+
[8]   Validation and Retrospective Clinical Evaluation of a Quantitative 16S rRNA Gene Metagenomic Sequencing Assay for Bacterial Pathogen Detection in Body Fluids [J].
Culbreath, Karissa ;
Melanson, Suzanne ;
Gale, James ;
Baker, Justin ;
Li, Fan ;
Saebo, Oystein ;
Kommedal, Oyvind ;
Contreras, Deisy ;
Garner, Omai B. ;
Yang, Shangxin .
JOURNAL OF MOLECULAR DIAGNOSTICS, 2019, 21 (05) :913-923
[9]   A comprehensive benchmarking study of protocols and sequencing platforms for 16S rRNA community profiling [J].
D'Amore, Rosalinda ;
Ijaz, Umer Zeeshan ;
Schirmer, Melanie ;
Kenny, John G. ;
Gregory, Richard ;
Darby, Alistair C. ;
Shakya, Migun ;
Podar, Mircea ;
Quince, Christopher ;
Hall, Neil .
BMC GENOMICS, 2016, 17
[10]   Recognizing the reagent microbiome [J].
de Goffau, Marcus C. ;
Lager, Susanne ;
Salter, Susannah J. ;
Wagner, Josef ;
Kronbichler, Andreas ;
Charnock-Jones, D. Stephen ;
Peacock, Sharon J. ;
Smith, Gordon C. S. ;
Parkhill, Julian .
NATURE MICROBIOLOGY, 2018, 3 (08) :851-853