Non-stoichiometric control of LiNbO3 and LiTaO3 in ferroelectric domain engineering for optical devices

被引:28
|
作者
Kitamura, K
Furukawa, Y
Takekawa, S
Hatanaka, T
Ito, H
Gopalan, V
机构
[1] Natl Inst Res Inorgan Mat, Tsukuba, Ibaraki 3050044, Japan
[2] Tohoku Univ, RIEC, Aoba Ku, Sendai, Miyagi 9808577, Japan
[3] Penn State Univ, University Pk, PA 16802 USA
关键词
lithium niobate; lithium tantalate; optical damage; photorefraction;
D O I
10.1080/00150190108016305
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Photorefractive damage, photoconductivity, and photogalvanic currents of stoichiometry controlled LiNbO3 and LiTaO3 have been investigated. A nearly stoichiometric LiNbO3 single crystal shows a lower photorefractive damage resistance than congruent LiNbO3, however, crystals doped with a small amount of MgO (> 0.78 mol.%) exhibit no measurable photorefractive damage at 532 nm up to intensities of 2 MW/cm(2). In the case of LiTaO3, it turned out that nearly stoichiometric crystals exhibit considerably high damage resistivity even without MgO doping. Green-induced infrared absorption (GRIIRA) in the crystals was also investigated by a photothermal technique. The GRIIRA in nearly stoichiometric LiNbO3 is found to be remarkably decreased by a small amount of MgO. GRIIRA in nearly stoichiometric LiTaO3 was strongly suppressed even without MgO doping.
引用
收藏
页码:235 / 243
页数:9
相关论文
共 50 条
  • [31] Optimization of transverse electro-optic effect in LiNbO3 and LiTaO3 crystals
    Shang, Ji-Fang
    Li, Qing-Lian
    Zhang, Fu-Xiao
    Niu, Ning-Zhe
    Chen, Ling
    Du, Wen-Jing
    APPLIED PHYSICS B-LASERS AND OPTICS, 2024, 130 (08):
  • [32] Study of anomalous behaviour of LiTaO3 during the annealed proton exchange process of optical waveguide's formation -: comparison with LiNbO3
    Salavcova, Linda
    Spirkova, Jarmila
    Ondracek, Frantisek
    Mackova, Anna
    Vacik, Jiri
    Kreissig, Ulrich
    Eichhorn, Frank
    Groetzschel, Rainer
    OPTICAL MATERIALS, 2007, 29 (07) : 913 - 918
  • [33] Pyroelectric and Ferroelectric Study of Polarisation Reversal in Near-Stoichiometric LiTaO3
    Bravina, Svetlana L.
    Morozovsky, Nicholas V.
    Hum, David S.
    Route, Roger K.
    Fejer, Martin M.
    FERROELECTRICS, 2010, 400 : 185 - 194
  • [34] Position and temperature dependence of pyroelectricity in domain-engineered stoichiometric and congruent LiTaO3
    Lehman, JH
    Pannell, CN
    FERROELECTRICS, 2003, 297 : 39 - +
  • [35] Specific features of electrical conductivity of LiTaO3 and LiNbO3 crystals in the temperature range of 290–450 K
    A. V. Yatsenko
    M. N. Palatnikov
    N. V. Sidorov
    A. S. Pritulenko
    S. V. Evdokimov
    Physics of the Solid State, 2015, 57 : 1547 - 1550
  • [36] Investigations on electrical properties and correlations to electron and X-ray energies of pyroelectric LiTaO3 and LiNbO3
    Wilke, Markus
    Harnisch, Karsten
    Knapp, Wolfram
    Ecke, Martin
    Senft, Torsten
    Halle, Thorsten
    2018 31ST INTERNATIONAL VACUUM NANOELECTRONICS CONFERENCE (IVNC), 2018,
  • [37] Origin of the difference in thermal conductivity and anharmonic phonon scattering between LiNbO3 and LiTaO3
    Fu, Yangbin
    Wei, Hui
    Wei, Lei
    Zhang, Huadi
    Wang, Xuping
    Liu, Bing
    Zhang, Yuanyuan
    Lv, Xianshun
    Zhou, Jixue
    Yu, Huajian
    CRYSTENGCOMM, 2021, 23 (48) : 8572 - 8578
  • [38] Multiphoton photoluminescence contrast in switched Mg:LiNbO3 and Mg:LiTaO3 single crystals
    Reichenbach, P.
    Kaempfe, T.
    Thiessen, A.
    Haussmann, A.
    Woike, T.
    Eng, L. M.
    APPLIED PHYSICS LETTERS, 2014, 105 (12)
  • [39] Resolved E-symmetry zone-centre phonons in LiTaO3 and LiNbO3
    Margueron, S.
    Bartasyte, A.
    Glazer, A. M.
    Simon, E.
    Hlinka, J.
    Gregora, I.
    Gleize, J.
    JOURNAL OF APPLIED PHYSICS, 2012, 111 (10)
  • [40] Atomistic origins of the differences in anisotropic fracture behaviour of LiTaO3 and LiNbO3 single crystals
    Gruber, M.
    Konetschnik, R.
    Popov, M.
    Spitaler, J.
    Supancic, P.
    Kiener, D.
    Bermejo, R.
    ACTA MATERIALIA, 2018, 150 : 373 - 380