A Perron-Frobenius-type Theorem for Positive Matrix Semigroups

被引:0
作者
Livshits, L. [1 ]
MacDonald, G. [2 ]
Radjavi, H. [3 ]
机构
[1] Colby Coll, Dept Math, Waterville, ME 04901 USA
[2] Univ Prince Edward Isl, Dept Math & Stat, Charlottetown, PE, Canada
[3] Univ Waterloo, Dept Pure Math, Waterloo, ON, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Matrix; Semigroup; Positive; Indecomposable; Perron-Frobenius Theorem;
D O I
10.1007/s11117-016-0403-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
One consequence of the Perron-Frobenius Theorem on indecomposable positive matrices is that whenever an matrix A dominates a non-singular positive matrix, there is an integer k dividing n such that, after a permutation of basis, A is block-monomial with blocks. Furthermore, for suitably large exponents, the nonzero blocks of are strictly positive. We present an extension of this result for indecomposable semigroups of positive matrices.
引用
收藏
页码:61 / 72
页数:12
相关论文
共 3 条