ON QUASIHYPERBOLIC GEODESICS IN BANACH SPACES

被引:20
作者
Rasila, Antti [1 ,2 ]
Talponen, Jarno [3 ]
机构
[1] Hunan Normal Univ, Dept Math, Changsha 410081, Hunan, Peoples R China
[2] Aalto Univ, Inst Math, FI-00076 Aalto, Finland
[3] Univ Eastern Finland, Dept Math & Phys, FI-80101 Joensuu, Finland
关键词
Quasihyperbolic metric; quasihyperbolic geodesic; uniform convexity; Banach space; C-1; smoothness; renormings; reflexive; Radon-Nikodym property; convex domain; FREE QUASICONFORMALITY; CONVEXITY PROPERTIES; UNIFORM DOMAINS; GEOMETRY; BALLS;
D O I
10.5186/aasfm.2014.3924
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study properties of quasihyperbolic geodesics on Banach spaces. For example, we show that in a strictly convex Banach space with the Radon-Nikodym property, the quasihyperbolic geodesics are unique. We also give an example of a convex domain Omega in a Banach space such that there is no geodesic between any given pair of points x, y is an element of Omega. In addition, we prove that if X is a uniformly convex Banach space and its modulus of convexity is of a power type, then every geodesic of the quasihyperbolic metric, defined on a proper subdomain of X, is smooth.
引用
收藏
页码:163 / 173
页数:11
相关论文
共 50 条
[31]   On Bilipschitz Extensions in Real Banach Spaces [J].
Huang, M. ;
Li, Y. .
ABSTRACT AND APPLIED ANALYSIS, 2013,
[32]   RELATIVELY QUASIMoBIUS MAPPINGS IN BANACH SPACES [J].
Zhou, Qingshan ;
Li, Liulan ;
Ponnusamy, Saminathan ;
He, Yuehui .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2023,
[33]   Lipschitz functions on Banach spaces which are actually on Asplund spaces [J].
CHENG Lixin Shi ShuzhongNankai Institute of Mathematics Nankai University Tianjin China .
ChineseScienceBulletin, 1997, (24) :2051-2054
[34]   ELLIPSOIDAL GEOMETRY OF BANACH SPACES AND APPLICATIONS [J].
Chen, Lili ;
Cui, Yunan ;
Hudzik, Henryk ;
Kaczmarek, Radoslaw .
JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2017, 18 (02) :279-308
[35]   ON THE SEPARABLE QUOTIENT PROBLEM FOR BANACH SPACES [J].
Ferrando, Juan C. ;
Kakol, Jerzy ;
Lopez-Pellicer, Manuel ;
Sliwa, Wieslaw .
FUNCTIONES ET APPROXIMATIO COMMENTARII MATHEMATICI, 2018, 59 (02) :153-173
[36]   On the subinvariance of uniform domains in Banach spaces [J].
Huang, M. ;
Vuorinen, M. ;
Wang, X. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2013, 407 (02) :527-540
[37]   Some Finsler spaces with homogeneous geodesics [J].
Yan, Zaili .
MATHEMATISCHE NACHRICHTEN, 2017, 290 (2-3) :474-481
[38]   Finsler spaces whose geodesics are orbits [J].
Yan, Zaili ;
Deng, Shaoqiang .
DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2014, 36 :1-23
[39]   Nonlinear equivalence of Banach spaces based on Birkhoff-James orthogonality [J].
Tanaka, Ryotaro .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2022, 505 (01)
[40]   Bimeasures in Banach spaces [J].
Nicolae Dinculeanu ;
Muthu Muthiah .
Annali di Matematica Pura ed Applicata, 2000, 178 (1) :339-392