共 50 条
ON QUASIHYPERBOLIC GEODESICS IN BANACH SPACES
被引:21
作者:
Rasila, Antti
[1
,2
]
Talponen, Jarno
[3
]
机构:
[1] Hunan Normal Univ, Dept Math, Changsha 410081, Hunan, Peoples R China
[2] Aalto Univ, Inst Math, FI-00076 Aalto, Finland
[3] Univ Eastern Finland, Dept Math & Phys, FI-80101 Joensuu, Finland
关键词:
Quasihyperbolic metric;
quasihyperbolic geodesic;
uniform convexity;
Banach space;
C-1;
smoothness;
renormings;
reflexive;
Radon-Nikodym property;
convex domain;
FREE QUASICONFORMALITY;
CONVEXITY PROPERTIES;
UNIFORM DOMAINS;
GEOMETRY;
BALLS;
D O I:
10.5186/aasfm.2014.3924
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
We study properties of quasihyperbolic geodesics on Banach spaces. For example, we show that in a strictly convex Banach space with the Radon-Nikodym property, the quasihyperbolic geodesics are unique. We also give an example of a convex domain Omega in a Banach space such that there is no geodesic between any given pair of points x, y is an element of Omega. In addition, we prove that if X is a uniformly convex Banach space and its modulus of convexity is of a power type, then every geodesic of the quasihyperbolic metric, defined on a proper subdomain of X, is smooth.
引用
收藏
页码:163 / 173
页数:11
相关论文
共 50 条