Estimation of maize plant height and leaf area index dynamics using an unmanned aerial vehicle with oblique and nadir photography

被引:52
|
作者
Che, Yingpu [1 ]
Wang, Qing [1 ]
Xie, Ziwen [1 ]
Zhou, Long [2 ]
Li, Shuangwei [1 ]
Hui, Fang [1 ]
Wang, Xiqing [2 ]
Li, Baoguo [1 ]
Ma, Yuntao [1 ]
机构
[1] China Agr Univ, Coll Resources & Environm Sci, Key Lab Arable Land Conservat North China, Minist Agr, Beijing 100193, Peoples R China
[2] China Agr Univ, Coll Biol Sci, Ctr Crop Funct Genom & Mol Breeding, Beijing 100193, Peoples R China
基金
美国国家科学基金会;
关键词
UAV; oblique photography; plant height; LAI; 3-D; Zea mays L; LOW-ALTITUDE; PHENOTYPING PLATFORM; VEGETATION INDEXES; FIELD; UAV; DENSITY; SYSTEMS; SORGHUM; VISION; IMAGES;
D O I
10.1093/aob/mcaa097
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Background and Aims High-throughput phenotyping is a limitation in plant genetics and breeding due to large-scale experiments in the field. Unmanned aerial vehicles (UAVs) can help to extract plant phenotypic traits rapidly and non-destructively with high efficiency. The general aim of this study is to estimate the dynamic plant height and leaf area index (LAI) by nadir and oblique photography with a UAV, and to compare the integrity of the established three-dimensional (3-D) canopy by these two methods. Methods Images were captured by a high-resolution digital RGB camera mounted on a LTAV at five stages with nadir and oblique photography. and processed by Agisoft Metashape to generate point clouds, orthomosaic maps and digital surface models. Individual plots were segmented according to their positions in the experimental design layout. The plant height of each inbred line was calculated automatically by a reference ground method. The LAI was calculated by the 3-D voxel method. The reconstructed canopy was sliced into different layers to compare leaf area density obtained from oblique and nadir photography. Key Results Good agreements were found for plant height between nadir photography, oblique photography and manual measurement during the whole growing season. The estimated LAI by oblique photography correlated better with measured LAI (slope = 0.87, R-2 = 0.67), compared with that of nadir photography (slope = 0.74, R-2 = 0.56). The total number of point clouds obtained by oblique photography was about 2.7-3.1 times than those by nadir photography. Leaf area density calculated by nadir photography was much less than that obtained by oblique photography, especially near the plant base. Conclusions Plant height and LAI can be extracted automatically and efficiently by both photography methods. Oblique photography can provide intensive point clouds and relatively complete canopy information at low cost. The reconstructed 3-D profile of the plant canopy can be easily recognized by oblique photography.
引用
收藏
页码:765 / 773
页数:9
相关论文
共 50 条
  • [21] Yield and plant height predictions of irrigated maize through unmanned aerial vehicle in North Florida
    de Sa Leitao, Diego Arruda Huggins
    Sharma, Ayush K.
    Singh, Aditya
    Sharma, Lakesh K.
    COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2023, 215
  • [22] Feasibility of Combining Deep Learning and RGB Images Obtained by Unmanned Aerial Vehicle for Leaf Area Index Estimation in Rice
    Yamaguchi, Tomoaki
    Tanaka, Yukie
    Imachi, Yuto
    Yamashita, Megumi
    Katsura, Keisuke
    REMOTE SENSING, 2021, 13 (01)
  • [23] Low-cost unmanned aerial vehicle-based digital hemispherical photography for estimating leaf area index: a feasibility assessment
    Brown, Luke A.
    Sutherland, David H.
    Dash, Jadunandan
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2020, 41 (23) : 9064 - 9074
  • [24] An Investigation of Winter Wheat Leaf Area Index Fitting Model Using Spectral and Canopy Height Model Data from Unmanned Aerial Vehicle Imagery
    Zhang, Xuewei
    Zhang, Kefei
    Wu, Suqin
    Shi, Hongtao
    Sun, Yaqin
    Zhao, Yindi
    Fu, Erjiang
    Chen, Shuo
    Bian, Chaofa
    Ban, Wei
    REMOTE SENSING, 2022, 14 (20)
  • [25] Determination of Leaf Area Index in barley using Unmanned Aerial Vehicles (UAV)
    Ballesteros, R.
    Ortega, J. F.
    Hernandez, D.
    Moreno, M. A.
    VII CONGRESO IBERICO DE AGROINGENIERIA Y CIENCIAS HORTICOLAS: INNOVAR Y PRODUCIR PARA EL FUTURO. INNOVATING AND PRODUCING FOR THE FUTURE, 2014, : 632 - 637
  • [26] Effects of Differences in Structure from Motion Software on Image Processing of Unmanned Aerial Vehicle Photography and Estimation of Crown Area and Tree Height in Forests
    Kameyama, Shohei
    Sugiura, Katsuaki
    REMOTE SENSING, 2021, 13 (04) : 1 - 22
  • [27] Inversion of the PROSAIL model to estimate leaf area index of maize, potato, and sunflower fields from unmanned aerial vehicle hyperspectral data
    Duan, Si-Bo
    Li, Zhao-Liang
    Wu, Hua
    Tang, Bo-Hui
    Ma, Lingling
    Zhao, Enyu
    Li, Chuanrong
    INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2014, 26 : 12 - 20
  • [28] Analysis of Plant Height, Crop Cover, and Biomass of Forage Maize Grown on Reclaimed Land Using Unmanned Aerial Vehicle Technology
    Lee, Dongho
    Go, Seunghwan
    Park, Jonghwar
    KOREAN JOURNAL OF REMOTE SENSING, 2023, 39 (01) : 47 - 63
  • [29] Improved estimation of leaf area index and leaf chlorophyll content of a potato crop using multi-angle spectral data - potential of unmanned aerial vehicle imagery
    Roosjen, Peter P. J.
    Brede, Benjamin
    Suomalainen, Juha M.
    Bartholomeus, Harm M.
    Kooistra, Lammert
    Clevers, Jan G. P. W.
    INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2018, 66 : 14 - 26
  • [30] Estimation of leaf area index in eucalypt forest using digital photography
    Macfarlane, Craig
    Hoffman, Megan
    Eamus, Derek
    Kerp, Naomi
    Higginson, Simon
    McMurtrie, Ross
    Adams, Mark
    AGRICULTURAL AND FOREST METEOROLOGY, 2007, 143 (3-4) : 176 - 188