A time-space spectral tau method for the time fractional cable equation and its inverse problem

被引:17
作者
Yang, Xiu [1 ]
Jiang, Xiaoyun [1 ]
Zhang, Hui [1 ]
机构
[1] Shandong Univ, Sch Math, Jinan 250100, Shandong, Peoples R China
基金
中国国家自然科学基金;
关键词
Time fractional cable equation; Time-space spectral Legendre tau method; Caputo fractional derivative; Parameter estimation; Nonlinear conjugate gradient method; ORDER; APPROXIMATION; CALCULUS;
D O I
10.1016/j.apnum.2018.03.016
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is devoted to the numerical solution of the time fractional cable equation and its inverse problem. The time-space spectral Legendre tau method based on the shifted Legendre polynomial and its operational matrices is used to solve the direct problem. Furthermore, we prove that the approximated solution of this method converges to the exact solution. In addition, the inverse problem is formulated by using the Tikhonov regularization, the stability and convergence for the inverse problem are provided, then we analyse the sensitivity coefficients and apply the nonlinear conjugate gradient method to solve the regularized problem. Finally, some numerical results are carried out to support the theoretical claims. (C) 2018 IMACS. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:95 / 111
页数:17
相关论文
共 37 条
[1]   GENERALIZED INF-SUP CONDITIONS FOR TSCHEBYSCHEFF SPECTRAL APPROXIMATION OF THE STOKES PROBLEM [J].
BERNARDI, C ;
CANUTO, C ;
MADAY, Y .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1988, 25 (06) :1237-1271
[2]   An improved collocation method for multi-dimensional space-time variable-order fractional Schrodinger equations [J].
Bhrawy, A. H. ;
Zaky, M. A. .
APPLIED NUMERICAL MATHEMATICS, 2017, 111 :197-218
[3]   A space-time Legendre spectral tau method for the two-sided space-time Caputo fractional diffusion-wave equation [J].
Bhrawy, A. H. ;
Zaky, M. A. ;
Van Gorder, R. A. .
NUMERICAL ALGORITHMS, 2016, 71 (01) :151-180
[4]   Efficient Legendre spectral tau algorithm for solving the two-sided space-time Caputo fractional advection-dispersion equation [J].
Bhrawy, A. H. ;
Zaky, M. A. ;
Machado, J. A. Tenreiro .
JOURNAL OF VIBRATION AND CONTROL, 2016, 22 (08) :2053-2068
[5]  
Bhrawy A.H., 2016, COMPUT MATH APPL, V73
[6]   Numerical solution of time fractional diffusion systems [J].
Burrage, Kevin ;
Cardone, Angelamaria ;
D'Ambrosio, Raffaele ;
Paternoster, Beatrice .
APPLIED NUMERICAL MATHEMATICS, 2017, 116 :82-94
[7]  
Canuto C., 2006, SCIENTIF COMPUT, DOI 10.1007/978-3-540-30726-6
[8]   FAST FINITE DIFFERENCE APPROXIMATION FOR IDENTIFYING PARAMETERS IN A TWO-DIMENSIONAL SPACE-FRACTIONAL NONLOCAL MODEL WITH VARIABLE DIFFUSIVITY COEFFICIENTS [J].
Chen, S. ;
Liu, F. ;
Jiang, X. ;
Turner, I. ;
Burrage, K. .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2016, 54 (02) :606-624
[9]  
Chen S., 2016, COMPUT MATH APPL
[10]   Splitting-based conjugate gradient method for a multi-dimensional linear inverse heat conduction problem [J].
Dinh Nho Hao ;
Thanh, Nguyen Trung ;
Sahli, Hichem .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2009, 232 (02) :361-377