Spectral analysis of thermal boundary conductance across solid/classical liquid interfaces: A molecular dynamics study

被引:44
作者
Giri, Ashutosh [1 ]
Hopkins, Patrick E. [1 ]
机构
[1] Univ Virginia, Dept Mech & Aerosp Engn, Charlottesville, VA 22904 USA
关键词
HEAT-FLOW; RESISTANCE; WATER; TEMPERATURE; SURFACES; ENERGY; SLIP;
D O I
10.1063/1.4891332
中图分类号
O59 [应用物理学];
学科分类号
摘要
We investigate the fundamental mechanisms driving thermal transport across solid/classical-liquid interfaces via non-equilibrium molecular dynamics simulations. We show that the increase in thermal boundary conductance across strongly bonded solid/liquid interfaces compared to weakly bonded interfaces is due to increased coupling of low-frequency modes when the solid is better wetted by the liquid. Local phonon density of states and spectral temperature calculations confirm this finding. Specifically, we show that highly wetted solids couple low frequency phonon energies more efficiently, where the interface of a poorly wetted solid acts like free surfaces. The spectral temperature calculations provide further evidence of low frequency phonon mode coupling under non equilibrium conditions. These results quantitatively explain the influence of wetting on thermal boundary conductance across solid/liquid interfaces. (c) 2014 AIP Publishing LLC.
引用
收藏
页数:5
相关论文
共 40 条
[1]   How Chemistry, Nanoscale Roughness, and the Direction of Heat Flow Affect Thermal Conductance of Solid-Water Interfaces [J].
Acharya, Hari ;
Mozdzierz, Nicholas J. ;
Keblinski, Pawel ;
Garde, Shekhar .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2012, 51 (04) :1767-1773
[2]   Temperature dependence of thermal resistance at the water/silicon interface [J].
Barisik, Murat ;
Beskok, Ali .
INTERNATIONAL JOURNAL OF THERMAL SCIENCES, 2014, 77 :47-54
[3]   Kapitza resistance at the liquid-solid interface [J].
Barrat, JL ;
Chiaruttini, F .
MOLECULAR PHYSICS, 2003, 101 (11) :1605-1610
[4]   Large slip effect at a nonwetting fluid-solid interface [J].
Barrat, JL ;
Bocquet, L .
PHYSICAL REVIEW LETTERS, 1999, 82 (23) :4671-4674
[5]   Flow boundary conditions from nano- to micro-scales [J].
Bocquet, Lyderic ;
Barrat, Jean-Louis .
SOFT MATTER, 2007, 3 (06) :685-693
[6]   The phonon theory of liquid thermodynamics [J].
Bolmatov, D. ;
Brazhkin, V. V. ;
Trachenko, K. .
SCIENTIFIC REPORTS, 2012, 2
[7]  
Bolmatov D, 2011, PHYS REV B, V84, DOI 10.1103/PhysRevB.84.054106
[8]   Nanoscale thermal transport [J].
Cahill, DG ;
Ford, WK ;
Goodson, KE ;
Mahan, GD ;
Majumdar, A ;
Maris, HJ ;
Merlin, R ;
Phillpot, SR .
JOURNAL OF APPLIED PHYSICS, 2003, 93 (02) :793-818
[9]   Analytical model for the effects of wetting on thermal boundary conductance across solid/classical liquid interfaces [J].
Caplan, Matthew E. ;
Giri, Ashutosh ;
Hopkins, Patrick E. .
JOURNAL OF CHEMICAL PHYSICS, 2014, 140 (15)
[10]   Thermal boundary resistance between single-walled carbon nanotubes and surrounding matrices [J].
Carlborg, Carl Fredrik ;
Shiomi, Junichiro ;
Maruyama, Shigeo .
PHYSICAL REVIEW B, 2008, 78 (20)