Cloning, overexpression, and characterization of a novel thermostable penicillin g acylase from Achromobacter xylosoxidans:: Probing the molecular basis for its high thermostability

被引:32
作者
Cai, G [1 ]
Zhu, SC [1 ]
Yang, S [1 ]
Zhao, GP [1 ]
Jiang, WH [1 ]
机构
[1] Chinese Acad Sci, Mol Microbiol Lab, Inst Plant Physiol & Ecol, Shanghai Inst Biol Sci, Shanghai 200032, Peoples R China
关键词
D O I
10.1128/AEM.70.5.2764-2770.2004
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
The gene encoding a novel penicillin G acylase (PGA), designated pgaW, was cloned from Achromobacter xylosoxidans and overexpressed in Escherichia coli. The pgaW gene contains an open reading frame of 2,586 nucleotides. The deduced protein sequence encoded by pgaW has about 50% amino acid identity to several well-characterized PGAs, including those of Providencia rettgeri, Kluyvera cryocrescens, and Escherichia coli. Biochemical studies showed that the optimal temperature for this novel PGA (PGA650) activity is greater than 60degreesC and its half-life of inactivation at 55degreesC is four times longer than that of another previously reported thermostable PGA from Alcaligenes faecalis (R. M. D. Verhaert, A. M. Riemens, J. V. R. Laan, J. V. Duin, and W. J. Quax, Appl. Environ. Microbiol. 63:3412-3418, 1997). To our knowledge, this is the most thermostable PGA ever characterized. To explore the molecular basis of the higher thermostability of PGA650, homology structural modeling and amino acid composition analyses were performed. The results suggested that the increased number of buried ion pair networks, lower N and Q contents, excessive arginine residues, and remarkably high content of proline residues in the structure of PGA650 could contribute to its high thermostability. The unique characteristic of higher thermostability of this novel PGA provides some advantages for its potential application in industry.
引用
收藏
页码:2764 / 2770
页数:7
相关论文
共 52 条
[1]   THERMAL-STABILITY AND PROTEIN-STRUCTURE [J].
ARGOS, P ;
ROSSMANN, MG ;
GRAU, UM ;
ZUBER, H ;
FRANK, G ;
TRATSCHIN, JD .
BIOCHEMISTRY, 1979, 18 (25) :5698-5703
[2]   Thermostability and thermoactivity of citrate synthases from the thermophilic and hyperthermophilic archaea, Thermoplasma acidophilum and Pyrococcus furiosus [J].
Arnott, MA ;
Michael, RA ;
Thompson, CR ;
Hough, DW ;
Danson, MJ .
JOURNAL OF MOLECULAR BIOLOGY, 2000, 304 (04) :657-668
[3]  
BORDERS CL, 1994, PROTEIN SCI, V3, P541
[4]   Structural and genomic correlates of hyperthermostability [J].
Cambillau, C ;
Claverie, JM .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (42) :32383-32386
[5]   Elucidation of determinants of protein stability through genome sequence analysis [J].
Chakravarty, S ;
Varadarajan, R .
FEBS LETTERS, 2000, 470 (01) :65-69
[6]   IMPROVEMENT IN THE ALKALINE STABILITY OF SUBTILISIN USING AN EFFICIENT RANDOM MUTAGENESIS AND SCREENING-PROCEDURE [J].
CUNNINGHAM, BC ;
WELLS, JA .
PROTEIN ENGINEERING, 1987, 1 (04) :319-325
[7]   Expression of penicillin G acylase from the cloned pac gene of Escherichia coli ATCC11105 -: Effects of pacR and temperature [J].
Dai, MH ;
Zhu, YM ;
Yang, YL ;
Wang, ED ;
Xie, Y ;
Zhao, GP ;
Jiang, WH .
EUROPEAN JOURNAL OF BIOCHEMISTRY, 2001, 268 (05) :1298-1303
[8]  
Das Rajdeep, 2000, Functional and Integrative Genomics, V1, P76, DOI 10.1007/s101420050009
[9]   Ligand-induced conformational change in penicillin acylase [J].
Done, SH ;
Brannigan, JA ;
Moody, PCE ;
Hubbard, RE .
JOURNAL OF MOLECULAR BIOLOGY, 1998, 284 (02) :463-475
[10]   PENICILLIN ACYLASE HAS A SINGLE-AMINO-ACID CATALYTIC CENTER [J].
DUGGLEBY, HJ ;
TOLLEY, SP ;
HILL, CP ;
DODSON, EJ ;
DODSON, G ;
MOODY, PCE .
NATURE, 1995, 373 (6511) :264-268