Aging of the (2+1)-dimensional Kardar-Parisi-Zhang model

被引:18
|
作者
Odor, Geza [1 ]
Kelling, Jeffrey [2 ,3 ]
Gemming, Sibylle [2 ,3 ]
机构
[1] MTA TTK MFA Res Inst Nat Sci, H-1525 Budapest, Hungary
[2] Helmholtz Zentrum, Inst Ion Beam Phys & Mat Res, D-01314 Dresden, Germany
[3] TU Chemnitz, Inst Phys, D-09107 Chemnitz, Germany
关键词
GROWTH; BEHAVIOR; RENORMALIZATION; DEPOSITION; INVARIANCE; EXPONENTS;
D O I
10.1103/PhysRevE.89.032146
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Extended dynamical simulations have been performed on a (2 + 1)-dimensional driven dimer lattice-gas model to estimate aging properties. The autocorrelation and the autoresponse functions are determined and the corresponding scaling exponents are tabulated. Since this model can be mapped onto the (2 + 1)-dimensional Kardar-Parisi-Zhang surface growth model, our results contribute to the understanding of the universality class of that basic system.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] Conformal invariance of loop ensembles under Kardar-Parisi-Zhang dynamics
    Cao, Xiangyu
    Rosso, Alberto
    Santachiara, Raoul
    EPL, 2015, 111 (01)
  • [32] Universal properties of the Kardar-Parisi-Zhang equation with quenched columnar disorders
    Haldar, Astik
    PHYSICAL REVIEW E, 2021, 104 (02)
  • [33] Nonperturbative renormalization group for the stationary Kardar-Parisi-Zhang equation: Scaling functions and amplitude ratios in 1+1, 2+1, and 3+1 dimensions
    Kloss, Thomas
    Canet, Leonie
    Wschebor, Nicolas
    PHYSICAL REVIEW E, 2012, 86 (05):
  • [34] Random noise term effect on discretized Kardar-Parisi-Zhang equation
    Sayfidinov, Okhunjon
    Bognar, Gabriella
    INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2022, ICNAAM-2022, 2024, 3094
  • [35] Scaling behaviour of the time-fractional Kardar-Parisi-Zhang equation
    Xia, Hui
    Tang, Gang
    Ma, Jingjie
    Hao, Dapeng
    Xun, Zhipeng
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2011, 44 (27)
  • [36] Recent developments on the Kardar-Parisi-Zhang surface-growth equation
    Wio, Horacio S.
    Escudero, Carlos
    Revelli, Jorge A.
    Deza, Roberto R.
    de la Lama, Marta S.
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2011, 369 (1935): : 396 - 411
  • [37] Stirred Kardar-Parisi-Zhang Equation with Quenched Random Noise: Emergence of Induced Nonlinearity
    Kakin, Polina I.
    Reiter, Mikhail A.
    Tumakova, Maria M.
    Gulitskiy, Nikolay M.
    Antonov, Nikolay V.
    UNIVERSE, 2022, 8 (02)
  • [38] Symmetries and scaling in generalised coupled conserved Kardar-Parisi-Zhang equations
    Banerjee, Tirthankar
    Basu, Abhik
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2018,
  • [39] Kardar-Parisi-Zhang universality in discrete two-dimensional driven-dissipative exciton polariton condensates
    Deligiannis, Konstantinos
    Fontaine, Quentin
    Squizzato, Davide
    Richard, Maxime
    Ravets, Sylvain
    Bloch, Jacqueline
    Minguzzi, Anna
    Canet, Leonie
    PHYSICAL REVIEW RESEARCH, 2022, 4 (04):
  • [40] Nonlinear Fluctuating Hydrodynamics for Kardar-Parisi-Zhang Scaling in Isotropic Spin Chains
    De Nardis, Jacopo
    Gopalakrishnan, Sarang
    Vasseur, Romain
    PHYSICAL REVIEW LETTERS, 2023, 131 (19)