Aging of the (2+1)-dimensional Kardar-Parisi-Zhang model

被引:18
|
作者
Odor, Geza [1 ]
Kelling, Jeffrey [2 ,3 ]
Gemming, Sibylle [2 ,3 ]
机构
[1] MTA TTK MFA Res Inst Nat Sci, H-1525 Budapest, Hungary
[2] Helmholtz Zentrum, Inst Ion Beam Phys & Mat Res, D-01314 Dresden, Germany
[3] TU Chemnitz, Inst Phys, D-09107 Chemnitz, Germany
关键词
GROWTH; BEHAVIOR; RENORMALIZATION; DEPOSITION; INVARIANCE; EXPONENTS;
D O I
10.1103/PhysRevE.89.032146
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Extended dynamical simulations have been performed on a (2 + 1)-dimensional driven dimer lattice-gas model to estimate aging properties. The autocorrelation and the autoresponse functions are determined and the corresponding scaling exponents are tabulated. Since this model can be mapped onto the (2 + 1)-dimensional Kardar-Parisi-Zhang surface growth model, our results contribute to the understanding of the universality class of that basic system.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] Large fluctuations of a Kardar-Parisi-Zhang interface on a half line
    Meerson, Baruch
    Vilenkin, Arkady
    PHYSICAL REVIEW E, 2018, 98 (03)
  • [22] Large Deviations of Surface Height in the Kardar-Parisi-Zhang Equation
    Meerson, Baruch
    Katzav, Eytan
    Vilenkin, Arkady
    PHYSICAL REVIEW LETTERS, 2016, 116 (07)
  • [23] Strong-coupling phases of the anisotropic Kardar-Parisi-Zhang equation
    Kloss, Thomas
    Canet, Leonie
    Wschebor, Nicolas
    PHYSICAL REVIEW E, 2014, 90 (06):
  • [24] Emergent Kardar-Parisi-Zhang Phase in Quadratically Driven Condensates
    Diessel, Oriana K.
    Diehl, Sebastian
    Chiocchetta, Alessio
    PHYSICAL REVIEW LETTERS, 2022, 128 (07)
  • [25] Height distribution tails in the Kardar-Parisi-Zhang equation with Brownian initial conditions
    Meerson, Baruch
    Schmidt, Johannes
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2017,
  • [26] Hallmarks of the Kardar-Parisi-Zhang universality class elicited by scanning probe microscopy
    Alves, Sidiney G.
    de Araujo, Clodoaldo I. L.
    Ferreira, Silvio C.
    NEW JOURNAL OF PHYSICS, 2016, 18
  • [27] Comparison of STM and AFM Measurements of Mo Thin Films with the Kardar-Parisi-Zhang Model
    Fomin, L. A.
    Malikov, I., V
    Berezin, V. A.
    Rassadin, A. E.
    Loginov, A. B.
    Loginov, B. A.
    TECHNICAL PHYSICS, 2022, 67 (02) : 61 - 68
  • [28] Feedback control of surface roughness in a one-dimensional Kardar-Parisi-Zhang growth process
    Priyanka
    Tauber, Uwe C.
    Pleimling, Michel
    PHYSICAL REVIEW E, 2020, 101 (02)
  • [29] Kardar-Parisi-Zhang Interfaces with Curved Initial Shapes and Variational Formula
    Fukai, Yohsuke T.
    Takeuchi, Kazumasa A.
    PHYSICAL REVIEW LETTERS, 2020, 124 (06)
  • [30] Nonuniversality of Critical Exponents in a Fractional Quenched Kardar-Parisi-Zhang Equation
    Xia, Hui
    Tang, Gang
    Lan, Yueheng
    JOURNAL OF STATISTICAL PHYSICS, 2014, 154 (05) : 1228 - 1240