Aging of the (2+1)-dimensional Kardar-Parisi-Zhang model

被引:18
|
作者
Odor, Geza [1 ]
Kelling, Jeffrey [2 ,3 ]
Gemming, Sibylle [2 ,3 ]
机构
[1] MTA TTK MFA Res Inst Nat Sci, H-1525 Budapest, Hungary
[2] Helmholtz Zentrum, Inst Ion Beam Phys & Mat Res, D-01314 Dresden, Germany
[3] TU Chemnitz, Inst Phys, D-09107 Chemnitz, Germany
关键词
GROWTH; BEHAVIOR; RENORMALIZATION; DEPOSITION; INVARIANCE; EXPONENTS;
D O I
10.1103/PhysRevE.89.032146
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Extended dynamical simulations have been performed on a (2 + 1)-dimensional driven dimer lattice-gas model to estimate aging properties. The autocorrelation and the autoresponse functions are determined and the corresponding scaling exponents are tabulated. Since this model can be mapped onto the (2 + 1)-dimensional Kardar-Parisi-Zhang surface growth model, our results contribute to the understanding of the universality class of that basic system.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] The Kardar-Parisi-Zhang exponents for the 2+1 dimensions
    Gomes-Filho, Marcio S.
    Penna, Andre L. A.
    Oliveira, Fernando A.
    RESULTS IN PHYSICS, 2021, 26
  • [2] Local scale-invariance of the 2+1 dimensional Kardar-Parisi-Zhang model
    Kelling, Jeffrey
    Odor, Geza
    Gemming, Sibylle
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2017, 50 (12) : 1 - 9
  • [3] Phenomenology of aging in the Kardar-Parisi-Zhang equation
    Henkel, Malte
    Noh, Jae Dong
    Pleimling, Michel
    PHYSICAL REVIEW E, 2012, 85 (03):
  • [4] Mapping of (2+1)-dimensional Kardar-Parisi-Zhang growth onto a driven lattice gas model of dimers
    Odor, Geza
    Liedke, Bartosz
    Heinig, Karl-Heinz
    PHYSICAL REVIEW E, 2009, 79 (02):
  • [5] Kardar-Parisi-Zhang scaling in the Hubbard model
    Moca, Caetaelin Pascu
    Werner, Miklos Antal
    Valli, Angelo
    Prosen, Tomaz
    Zarand, Gergely
    PHYSICAL REVIEW B, 2023, 108 (23)
  • [6] Dimensional fragility of the Kardar-Parisi-Zhang universality class
    Nicoli, Matteo
    Cuerno, Rodolfo
    Castro, Mario
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2013,
  • [7] Kardar-Parisi-Zhang modes in d-dimensional directed polymers
    Schuetz, G. M.
    Wehefritz-Kaufmann, B.
    PHYSICAL REVIEW E, 2017, 96 (03):
  • [8] Logarithmic or algebraic: Roughening of an active Kardar-Parisi-Zhang surface
    Jana, Debayan
    Haldar, Astik
    Basu, Abhik
    PHYSICAL REVIEW E, 2024, 109 (03)
  • [9] Random geometry and the Kardar-Parisi-Zhang universality class
    Santalla, Silvia N.
    Rodriguez-Laguna, Javier
    LaGatta, Tom
    Cuerno, Rodolfo
    NEW JOURNAL OF PHYSICS, 2015, 17
  • [10] Efimov effect at the Kardar-Parisi-Zhang roughening transition
    Nakayama, Yu
    Nishida, Yusuke
    PHYSICAL REVIEW E, 2021, 103 (01)