Machine-Learning-Based Inversion Scheme for Super-Resolution Three-Dimensional Microwave Human Brain Imaging

被引:2
|
作者
Zhao, Le-Yi [1 ,2 ]
Xiao, Li-Ye [1 ,2 ]
Cheng, Yu [1 ,2 ]
Hong, Ronghan [1 ,2 ]
Liu, Qing Huo [3 ]
机构
[1] Xiamen Univ, Inst Electromagnet & Acoust, Xiamen 361005, Peoples R China
[2] Xiamen Univ, Fujian Prov Key Lab Electromagnet Wave Sci & Detec, Xiamen 361005, Peoples R China
[3] Duke Univ, Dept Elect & Comp Engn, Durham, NC 27708 USA
来源
基金
中国国家自然科学基金;
关键词
Electromagnetic (EM) inversion; high contrast; human brain imaging; machine learning; super-resolution; RECONSTRUCTION; INTERPOLATION; OBJECTS;
D O I
10.1109/LAWP.2022.3196189
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
To realize efficient three-dimensional (3-D) super-resolution whole brain microwave imaging, a new machine- learning-based inversion method with a resolution enhancement technique is proposed. It consists of three parts: a parallel semiconnected backpropagation neural network (SJ-BPNN) scheme, a U-Net scheme, and a modified Akima piecewise cubic Hermite interpolation (MAPCHI) scheme. The parallel SJ-BPNN scheme is first employed to map the measured scattered field data to the preliminary electrical properties' distribution of human brain. Then, U-Net is used to improve the quality of these preliminary reconstruction results. Finally, the MAPCHI scheme is adopted to greatly improve the resolution of reconstruction results with a very low computational cost. Numerical examples of a normal human brain and a human brain with abnormal scatterers show that the proposed method can achieve accurate high-resolution human brain imaging with 1024 x 1024 x 1024 voxels with a very low computational cost.
引用
收藏
页码:2437 / 2441
页数:5
相关论文
共 50 条
  • [31] Three-Dimensional, Tomographic Super-Resolution Fluorescence Imaging of Serially Sectioned Thick Samples
    Nanguneri, Siddharth
    Flottmann, Benjamin
    Horstmann, Heinz
    Heilemann, Mike
    Kuner, Thomas
    PLOS ONE, 2012, 7 (05):
  • [32] Live-cell multiplane three-dimensional super-resolution optical fluctuation imaging
    Stefan Geissbuehler
    Azat Sharipov
    Aurélien Godinat
    Noelia L. Bocchio
    Patrick A. Sandoz
    Anja Huss
    Nickels A. Jensen
    Stefan Jakobs
    Jörg Enderlein
    F. Gisou van der Goot
    Elena A. Dubikovskaya
    Theo Lasser
    Marcel Leutenegger
    Nature Communications, 5
  • [33] Array Radar Three-Dimensional Forward-Looking Imaging Algorithm Based on Two-Dimensional Super-Resolution
    Dai, Jinke
    Sun, Weijie
    Jiang, Xinrui
    Wu, Di
    SENSORS, 2024, 24 (22)
  • [34] Supervised Machine-Learning-Based Determination of Three-Dimensional Structure of Metallic Nanoparticles
    Timoshenko, Janis
    Lu, Deyu
    Lin, Yuewei
    Frenkel, Anatoly I.
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2017, 8 (20): : 5091 - 5098
  • [35] Three-dimensional super-resolution longitudinal magnetization spot arrays
    Zhong-Quan Nie
    Han Lin
    Xiao-Fei Liu
    Ai-Ping Zhai
    Yan-Ting Tian
    Wen-Jie Wang
    Dong-Yu Li
    Wei-Qiang Ding
    Xue-Ru Zhang
    Ying-Lin Song
    Bao-Hua Jia
    Light: Science & Applications, 2017, 6 : e17032 - e17032
  • [36] Three-dimensional super-resolution longitudinal magnetization spot arrays
    Nie, Zhong-Quan
    Lin, Han
    Liu, Xiao-Fei
    Zhai, Ai-Ping
    Tian, Yan-Ting
    Wang, Wen-Jie
    Li, Dong-Yu
    Ding, Wei-Qiang
    Zhang, Xue-Ru
    Song, Ying-Lin
    Jia, Bao-Hua
    LIGHT-SCIENCE & APPLICATIONS, 2017, 6 : e17032 - e17032
  • [37] Three-dimensional super-resolution range-gated imaging based on a Gaussian-range-intensity model
    Wang, Pengfei
    Liu, Hao
    Qiu, Shaoping
    Liu, Yu
    Huang, Feng
    APPLIED OPTICS, 2023, 62 (29) : 7633 - 7642
  • [38] k-Space Decomposition Based Super-resolution Three-dimensional Imaging Method for Millimeter Wave Radar
    Omori, Tomoki
    Isono, Yusuke
    Kondo, Katsuhiko
    Akamine, Yusuke
    Kidera, Shouhei
    2020 IEEE RADAR CONFERENCE (RADARCONF20), 2020,
  • [39] Three-Dimensional Super Resolution Reconstruction by Integral Imaging
    Yang, Chen
    Wang, Jingang
    Stern, Adrian
    Gao, Shengkui
    Gurev, Viktor
    Javidi, Bahram
    JOURNAL OF DISPLAY TECHNOLOGY, 2015, 11 (11): : 947 - 952
  • [40] Three-dimensional ESRGAN for super-resolution reconstruction of turbulent flows with tricubic interpolation-based transfer learning
    Yu, Linqi
    Yousif, Mustafa Z.
    Zhang, Meng
    Hoyas, Sergio
    Vinuesa, Ricardo
    Lim, Hee-Chang
    PHYSICS OF FLUIDS, 2022, 34 (12)