Natural and synthetic nanopores directing osteogenic differentiation of human stem cells

被引:28
作者
Greiner, Johannes F. W. [1 ]
Gottschalk, Martin [2 ]
Fokin, Nadine [2 ]
Bueker, Bjoern [2 ]
Kaltschmidt, Bernhard Peter [2 ]
Dreyer, Axel [2 ]
Vordemvenne, Thomas [3 ]
Kaltschmidt, Christian [1 ,5 ]
Huetten, Andreas [2 ,5 ]
Kaltschmidt, Barbara [1 ,4 ,5 ]
机构
[1] Bielefeld Univ, Dept Cell Biol, Bielefeld, Germany
[2] Bielefeld Univ, Thin Films & Phys Nanostruct, Bielefeld, Germany
[3] Evangelical Hosp Bielefeld, Dept Trauma & Orthoped Surg, Bielefeld, Germany
[4] Bielefeld Univ, Mol Neurobiol, Bielefeld, Germany
[5] Bielefeld Univ, Bielefeld Inst Nanosci BINAS, Bielefeld, Germany
关键词
Nanopores; SiO2; nanocomposite; Adult stem cells; Collagen; Osteogenic differentiation; COLLAGEN; MINERALIZATION; MICROSCOPY; CULTURE; SURFACE; GROWTH;
D O I
10.1016/j.nano.2019.01.018
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Bone regeneration is a highly orchestrated process crucial for endogenous healing procedures after accidents, infections or tumor therapy. Changes in surface nanotopography are known to directly affect the formation of osteogenic cell types, although no direct linkage to the endogenous nanotopography of bone was described so far. Here we show the presence of pores of 31.93 +/- 0.97 nm diameter on the surface of collagen type I fibers, the organic component of bone, and demonstrate these pores to be sufficient to induce osteogenic differentiation of adult human stem cells. We further applied SiO2 nanoparticles thermally cross-linked to a nanocomposite to artificially biomimic 31.93 +/- 0.97 mn pores, which likewise led to in vitro production of bone mineral by adult human stem cells. Our findings show an endogenous mechanism of directing osteogenic differentiation of adult stem cells by nanotopological cues and provide a direct application using SiO2 nanocomposites with surface nanotopography biomimicking native bone architecture. (C) 2019 The Authors. Published by Elsevier Inc.
引用
收藏
页码:319 / 328
页数:10
相关论文
共 37 条
[1]   The nanometre-scale physiology of bone: steric modelling and scanning transmission electron microscopy of collagen-mineral structure [J].
Alexander, Benjamin ;
Daulton, Tyrone L. ;
Genin, Guy M. ;
Lipner, Justin ;
Pasteris, Jill D. ;
Wopenka, Brigitte ;
Thomopoulos, Stavros .
JOURNAL OF THE ROYAL SOCIETY INTERFACE, 2012, 9 (73) :1774-1786
[2]   Bioactive silica-based nanoparticles stimulate bone-forming osteoblasts, suppress bone-resorbing osteoclasts, and enhance bone mineral density in vivo [J].
Beck, George R., Jr. ;
Ha, Shin-Woo ;
Camalier, Corinne E. ;
Yamaguchi, Masayoshi ;
Li, Yan ;
Lee, Jin-Kyu ;
Weitzmann, M. Neale .
NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE, 2012, 8 (06) :793-803
[3]  
DACULSI G, 1990, BIOMATERIALS, V11, P86
[4]   The control of human mesenchymal cell differentiation using nanoscale symmetry and disorder [J].
Dalby, Matthew J. ;
Gadegaard, Nikolaj ;
Tare, Rahul ;
Andar, Abhay ;
Riehle, Mathis O. ;
Herzyk, Pawel ;
Wilkinson, Chris D. W. ;
Oreffo, Richard O. C. .
NATURE MATERIALS, 2007, 6 (12) :997-1003
[5]   Bone regeneration: current concepts and future directions [J].
Dimitriou, Rozalia ;
Jones, Elena ;
McGonagle, Dennis ;
Giannoudis, Peter V. .
BMC MEDICINE, 2011, 9
[6]  
Dreyer A, 2016, NAT MATER, V15, P522, DOI [10.1038/NMAT4553, 10.1038/nmat4553]
[7]  
Fang Ming, 2013, Bonekey Rep, V2, P394, DOI 10.1038/bonekey.2013.128
[8]   Nanomaterials and bone regeneration [J].
Gong, Tao ;
Xie, Jing ;
Liao, Jinfeng ;
Zhang, Tao ;
Lin, Shiyu ;
Lin, Yunfeng .
BONE RESEARCH, 2015, 3
[9]   An Alizarin red-based assay of mineralization by adherent cells in culture: comparison with cetylpyridinium chloride extraction [J].
Gregory, CA ;
Gunn, WG ;
Peister, A ;
Prockop, DJ .
ANALYTICAL BIOCHEMISTRY, 2004, 329 (01) :77-84
[10]  
Greiner J F W, 2011, Eur Cell Mater, V22, P403