A random graph model for optical networks of sensors

被引:37
作者
Díaz, J [1 ]
Petit, J [1 ]
Serna, M [1 ]
机构
[1] Univ Politecn Cataluna, Dept Llenguatges & Sist Informat, ES-08034 Barcelona, Spain
关键词
optical networks of sensors; random scaled sector graphs; localization algorithm; random model of network;
D O I
10.1109/TMC.2003.1233525
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The main contribution of this paper is presenting a new model for Smart Dust networks communicating through optical links and showing its applicability when the goal of the network is monitoring an area under the surveillance of a base station. We analyze the basic parameters of these networks as a new model of random graphs and propose simple distributed protocols for basic communication. These protocols are designed to minimize the energy consumption.
引用
收藏
页码:186 / 196
页数:11
相关论文
共 19 条
  • [1] Wireless sensor networks: a survey
    Akyildiz, IF
    Su, W
    Sankarasubramaniam, Y
    Cayirci, E
    [J]. COMPUTER NETWORKS, 2002, 38 (04) : 393 - 422
  • [2] The minimum vertex degree of a graph on uniform points in [0,1](d)
    Appel, MJB
    Russo, RP
    [J]. ADVANCES IN APPLIED PROBABILITY, 1997, 29 (03) : 582 - 594
  • [3] The maximum vertex degree of a graph on uniform points in [0,1](d)
    Appel, MJB
    Russo, RP
    [J]. ADVANCES IN APPLIED PROBABILITY, 1997, 29 (03) : 567 - 581
  • [4] BHARATHIDASAN A, 2002, SENSOR NETWORKS TECH
  • [5] Unit disk graph recognition is NP-hard
    Breu, H
    Kirkpatrick, DG
    [J]. COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 1998, 9 (1-2): : 3 - 24
  • [6] CHATZIGIANNAKIS I, 2002, P ACM WORKSH PRINC M
  • [7] UNIT DISK GRAPHS
    CLARK, BN
    COLBOURN, CJ
    JOHNSON, DS
    [J]. DISCRETE MATHEMATICS, 1990, 86 (1-3) : 165 - 177
  • [8] Díaz J, 1998, LECT NOTES COMPUT SC, V1518, P294
  • [9] Approximating layout problems on random geometric graphs
    Diaz, J
    Penrose, MD
    Petit, J
    Serna, M
    [J]. JOURNAL OF ALGORITHMS-COGNITION INFORMATICS AND LOGIC, 2001, 39 (01): : 78 - 116
  • [10] DOHERTY L, 2000, THESIS U CALIFORNIA