AMPK-dependent phosphorylation is required for transcriptional activation of TFEB and TFE3

被引:150
作者
Paquette, Mathieu [1 ,2 ]
El-Houjeiri, Leeanna [1 ,2 ]
C. Zirden, Linda [1 ,2 ]
Puustinen, Pietri [3 ]
Blanchette, Paola [1 ,2 ]
Jeong, Hyeonju [1 ,2 ]
Dejgaard, Kurt [2 ]
Siegel, Peter M. [1 ,2 ,4 ]
Pause, Arnim [1 ,2 ]
机构
[1] McGill Univ, Goodman Canc Res Ctr, Montreal, PQ, Canada
[2] McGill Univ, Dept Biochem, Montreal, PQ, Canada
[3] Danish Canc Soc Res Ctr DCRC, Cell Death & Metab, Copenhagen, Denmark
[4] McGill Univ, Dept Med, Montreal, PQ, Canada
基金
加拿大健康研究院;
关键词
AMP-activated protein kinase; autophagy; drug resistance; lysosomal biogenesis; mechanistic target of rapamycin kinase; phosphorylation; transcription factor EB; transcription factor E3; PROTEIN-KINASE; AUTOPHAGY; DEGRADATION;
D O I
10.1080/15548627.2021.1898748
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Increased macroautophagy/autophagy and lysosomal activity promote tumor growth, survival and chemo-resistance. During acute starvation, autophagy is rapidly engaged by AMPK (AMP-activated protein kinase) activation and MTOR (mechanistic target of rapamycin kinase) complex 1 (MTORC1) inhibition to maintain energy homeostasis and cell survival. TFEB (transcription factor E3) and TFE3 (transcription factor binding to IGHM enhancer 3) are master transcriptional regulators of autophagy and lysosomal activity and their cytoplasm/nuclear shuttling is controlled by MTORC1-dependent multisite phosphorylation. However, it is not known whether and how the transcriptional activity of TFEB or TFE3 is regulated. We show that AMPK mediates phosphorylation of TFEB and TFE3 on three serine residues, leading to TFEB and TFE3 transcriptional activity upon nutrient starvation, FLCN (folliculin) depletion and pharmacological manipulation of MTORC1 or AMPK. Collectively, we show that MTORC1 specifically controls TFEB and TFE3 cytosolic retention, whereas AMPK is essential for TFEB and TFE3 transcriptional activity. This dual and opposing regulation of TFEB and TFE3 by MTORC1 and AMPK is reminiscent of the regulation of another critical regulator of autophagy, ULK1 (unc-51 like autophagy activating kinase 1). Surprisingly, we show that chemoresistance is mediated by AMPK-dependent activation of TFEB, which is abolished by pharmacological inhibition of AMPK or mutation of serine 466, 467 and 469 to alanine residues within TFEB. Altogether, we show that AMPK is a key regulator of TFEB and TFE3 transcriptional activity, and we validate AMPK as a promising target in cancer therapy to evade chemotherapeutic resistance.
引用
收藏
页码:3957 / 3975
页数:19
相关论文
共 84 条
[1]   MiT family translocation renal cell carcinoma [J].
Argani, Pedram .
SEMINARS IN DIAGNOSTIC PATHOLOGY, 2015, 32 (02) :103-113
[2]   Folliculin encoded by the BHD gene interacts with a binding protein, FNIP1, and AMPK, and is involved in AMPK and mTOR signaling [J].
Baba, Masaya ;
Hong, Seung-Beom ;
Sharma, Nirmala ;
Warren, Michelle B. ;
Nickerson, Michael L. ;
Iwamatsu, Akihiro ;
Esposito, Dominic ;
Gillette, William K. ;
Hopkins, Ralph F., III ;
Hartley, James L. ;
Furihata, Mutsuo ;
Oishi, Shinya ;
Zhen, Wei ;
Burke, Terrence R., Jr. ;
Linehan, W. Marston ;
Schmidt, Laura S. ;
Zbar, Berton .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2006, 103 (42) :15552-15557
[3]   Loss of Folliculin Disrupts Hematopoietic Stem Cell Quiescence and Homeostasis Resulting in Bone Marrow Failure [J].
Baba, Masaya ;
Toyama, Hirofumi ;
Sun, Lei ;
Takubo, Keiyo ;
Suh, Hyung-Chan ;
Hasumi, Hisashi ;
Nakamura-Ishizu, Ayako ;
Hasumi, Yukiko ;
Klarmann, Kimberly D. ;
Nakagata, Naomi ;
Schmidt, Laura S. ;
Linehan, W. Marston ;
Suda, Toshio ;
Keller, Jonathan R. .
STEM CELLS, 2016, 34 (04) :1068-1082
[4]   The serine/threonine kinase ULK1 is a target of multiple phosphorylation events [J].
Bach, Markus ;
Larance, Mark ;
James, David E. ;
Ramm, Georg .
BIOCHEMICAL JOURNAL, 2011, 440 :283-291
[5]   Ragulator Is a GEF for the Rag GTPases that Signal Amino Acid Levels tomTORC1 [J].
Bar-Peled, Liron ;
Schweitzer, Lawrence D. ;
Zoncu, Roberto ;
Sabatini, David M. .
CELL, 2012, 150 (06) :1196-1208
[6]   Rapamycin alleviates toxicity of different aggregate-prone proteins [J].
Berger, Z ;
Ravikumar, B ;
Menzies, FM ;
Oroz, LG ;
Underwood, BR ;
Pangalos, MN ;
Schmitt, I ;
Wullner, U ;
Evert, BO ;
O'Kane, CJ ;
Rubinsztein, DC .
HUMAN MOLECULAR GENETICS, 2006, 15 (03) :433-442
[7]   Cell-Mediated Autophagy Promotes Cancer Cell Survival [J].
Buchser, William J. ;
Laskow, Thomas C. ;
Pavlik, Philip J. ;
Lin, Hui-Min ;
Lotze, Michael T. .
CANCER RESEARCH, 2012, 72 (12) :2970-2979
[8]   TFEB-mediated autophagy rescues midbrain dopamine neurons from α-synuclein toxicity [J].
Decressac, Mickael ;
Mattsson, Bengt ;
Weikop, Pia ;
Lundblad, Martin ;
Jakobsson, Johan ;
Bjorklund, Anders .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2013, 110 (19) :E1817-E1826
[9]   AMP-activated protein kinase selectively inhibited by the type II inhibitor SBI-0206965 [J].
Dite, Toby A. ;
Langendorf, Christopher G. ;
Hoque, Ashfaqul ;
Galic, Sandra ;
Rebello, Richard J. ;
Ovens, Ashley J. ;
Lindqvist, Lisa M. ;
Ngoei, Kevin R. W. ;
Ling, Naomi X. Y. ;
Furic, Luc ;
Kemp, Bruce E. ;
Scott, John W. ;
Oakhill, Jonathan S. .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2018, 293 (23) :8874-8885
[10]   Motif affinity and mass spectrometry proteomic approach for the discovery of cellular AMPK targets: Identification of mitochondrial fission factor as a new AMPK substrate [J].
Ducommun, Serge ;
Deak, Maria ;
Sumpton, David ;
Ford, Rebecca J. ;
Galindo, Antonio Nunez ;
Kussmann, Martin ;
Viollet, Benoit ;
Steinberg, Gregory R. ;
Foretz, Marc ;
Dayon, Loic ;
Morrice, Nicholas A. ;
Sakamoto, Kei .
CELLULAR SIGNALLING, 2015, 27 (05) :978-988