EXISTENCE, UNIQUENESS AND MULTIPLICITY OF POSITIVE SOLUTIONS FOR SOME NONLOCAL SINGULAR ELLIPTIC PROBLEMS

被引:0
作者
Yan, Baoqiang [1 ]
Ren, Qianqian [1 ]
机构
[1] Shandong Normal Univ, Sch Math Sci, Jinan 250014, Peoples R China
关键词
Nonlocal elliptic equations; existence; uniqueness; Rabinowitz-type global bifurcation theory; multiplicity; DIRICHLET PROBLEM;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, using the sub-supersolution method and Rabinowitz-type global bifurcation theory, we prove some results on existence, uniqueness and multiplicity of positive solutions for some singular nonlocal elliptic problems.
引用
收藏
页数:21
相关论文
共 23 条
[1]  
Adams RA., 1973, SOBOLEV SPACES
[2]   Existence of solution for a class of nonlocal elliptic problem via sub-supersolution method [J].
Alves, Claudianor O. ;
Covei, Dragos-Patru .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2015, 23 :1-8
[3]  
[Anonymous], COMPLEX VARIABLES EL
[4]  
[Anonymous], ORIGINAL RES ARTICLE
[5]  
[Anonymous], P ROYAL SOC EDINBURG
[6]  
[Anonymous], J COMM PURE APPL MAT
[7]  
[Anonymous], 2007, Handbook of Differential Equations: Stationary Partial Differential Equations. Handbook of Differential Equations
[8]   Some remarks on non local elliptic and parabolic problems [J].
Chipot, M ;
Lovat, B .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1997, 30 (07) :4619-4627
[9]  
Chipot M, 2014, DIFFER INTEGRAL EQU, V27, P289
[10]   Boundary layer solutions to functional elliptic equations [J].
Chipot, Michel ;
Correa, Francisco Julio S. A. .
BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2009, 40 (03) :381-393