Base change for ramified unitary groups: The strongly ramified case

被引:1
作者
Blondel, Corinne [1 ]
Tam, Geo Kam-Fai [2 ]
机构
[1] Univ Paris, Sorbonne Univ, Inst Math Jussieu Paris Rive Gauche, CNRS, F-75013 Paris, France
[2] Radboud Univ Nijmegen, Dept Math, IMAPP, Postbus 9010, NL-6500 GL Nijmegen, Netherlands
来源
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK | 2021年 / 774卷
基金
欧洲研究理事会;
关键词
LOCAL LANGLANDS CORRESPONDENCE; P-ADIC GROUPS; SUPERCUSPIDAL REPRESENTATIONS; CUSPIDAL REPRESENTATIONS; CLASSICAL-GROUPS; DISCRETE-SERIES; HECKE ALGEBRAS; REDUCIBILITY; GL(N); CLASSIFICATION;
D O I
10.1515/crelle-2020-0049
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We compute a special case of base change of certain supercuspidal representations from a ramified unitary group to a general linear group, both defined over a p-adic field of odd residual characteristic. In this special case, we require the given supercuspidal representation to contain a skew maximal simple stratum, and the field datum of this stratum to be of maximal degree, tamely ramified over the base field, and quadratic ramified over its subfield fixed by the Galois involution that defines the unitary group. The base change of this supercuspidal representation is described by a canonical lifting of its underlying simple character, together with the base change of the level-zero component of its inducing cuspidal type, modified by a sign attached to a quadratic Gauss sum defined by the internal structure of the simple character. To obtain this result, we study the reducibility points of a parabolic induction and the corresponding module over the affine Hecke algebra, defined by the covering type over the product of types of the given supercuspidal representation and of a candidate of its base change.
引用
收藏
页码:127 / 161
页数:35
相关论文
共 54 条
  • [1] Depth-zero base change for unramified U (2,1)
    Adler, JD
    Lansky, JM
    [J]. JOURNAL OF NUMBER THEORY, 2005, 114 (02) : 324 - 360
  • [2] DEPTH-ZERO BASE CHANGE FOR RAMIFIED U(2,1)
    Adler, Jeffrey D.
    Lansky, Joshua M.
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2010, 362 (10) : 5569 - 5599
  • [3] [Anonymous], 2014, PREPRINT
  • [4] [Anonymous], 2001, ANN MATH STUD
  • [5] Arthur J., 1996, SELECTA MATH, V2, P501, DOI 10.1007/BF02433450
  • [6] Arthur J., 1989, ANN MATH STUD, V120
  • [7] Arthur J., 2013, American Mathematical Society Colloquium Publications, vol. 61. American Mathematical Society, V61
  • [8] Local transfer and reducibility of induced representations of p-adic groups of classical type
    Asgari, Mandi
    Cogdell, James W.
    Shahidi, Freydoon
    [J]. ADVANCES IN THE THEORY OF AUTOMORPHIC FORMS AND THEIR L-FUNCTIONS, 2016, 664 : 1 - +
  • [9] Hecke algebras and generalized principal series of Sp4(F)
    Blasco, L
    Blondel, C
    [J]. PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2002, 85 : 659 - 685
  • [10] Types, packs and base change : the U (2,1) (F0) example. I. Maximal simple types and singleton packs
    Blasco, Laure
    [J]. CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2008, 60 (04): : 790 - 821