An Estimation and Correction Combined Method for HVDC Model Parameters Identification

被引:1
作者
Li, Feng [1 ]
Wang, Qi [1 ]
Hu, Jian-Xiong [1 ]
Tang, Yi [1 ]
机构
[1] Southeast Univ, Sch Elect Engn, Nanjing 210096, Peoples R China
关键词
Databases; Trajectory; Parameter estimation; Pattern matching; Correlation coefficient; Indexes; Computational modeling; gradient decent; parameter identification; high voltage direct current;
D O I
10.1109/ACCESS.2021.3070081
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Identifying correct model parameters is important for actual power system operation and control. Though existing gradient decent method shows good timeliness, it would converge to wrong results because of inevitable linearization process when applied for strongly nonlinear models. To make up this shortcoming, an estimation and correction combined method is proposed in this paper, by which the gradient method is expected to have better initial values for avoiding the local optimum trap. In the estimation process, pattern matching is utilized based on the constructed post-disturbance trajectory based typical parameters matching database. To construct the typical parameters matching database, correlation coefficient based forward and backward cluster method is applied, with which the typical parameters matching database can be updated conveniently and quickly. In the correction process, a novel comprehensive evaluation index is put forward for gradient decent method to evaluate parameter identification effects reasonably. Finally, the proposed combined parameter identification method is verified with standard high voltage direct current (HVDC) models together with parameter sensitivity analysis, and results show effectiveness.
引用
收藏
页码:51020 / 51028
页数:9
相关论文
共 20 条
  • [1] Agustriad N. I., 2019, PROC N AM POWER S, P1
  • [2] WECC Composite Load Model Parameter Identification Using Evolutionary Deep Reinforcement Learning
    Bu, Fankun
    Ma, Zixiao
    Yuan, Yuxuan
    Wang, Zhaoyu
    [J]. IEEE TRANSACTIONS ON SMART GRID, 2020, 11 (06) : 5407 - 5417
  • [3] Deep Learning-Based Time-Varying Parameter Identification for System-Wide Load Modeling
    Cui, Mingjian
    Khodayar, Mahdi
    Chen, Chen
    Wang, Xinan
    Zhang, Ying
    Khodayar, Mohammad E.
    [J]. IEEE TRANSACTIONS ON SMART GRID, 2019, 10 (06) : 6102 - 6114
  • [4] Longitudinal Vehicle Speed Estimation for Four-Wheel-Independently-Actuated Electric Vehicles Based on Multi-Sensor Fusion
    Ding, Xiaolin
    Wang, Zhenpo
    Zhang, Lei
    Wang, Cong
    [J]. IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2020, 69 (11) : 12797 - 12806
  • [5] Application of Dynamic State and Parameter Estimation Techniques on Real-World Data
    Fan, Lingling
    Miao, Zhixin
    Wehbe, Yasser
    [J]. IEEE TRANSACTIONS ON SMART GRID, 2013, 4 (02) : 1133 - 1141
  • [6] Extended Kalman filtering based real-time dynamic state and parameter estimation using PMU data
    Fan, Lingling
    Wehbe, Yasser
    [J]. ELECTRIC POWER SYSTEMS RESEARCH, 2013, 103 : 168 - 177
  • [7] Karlsson J, 2006, SIMPLIFIED CONTROL M
  • [8] High-Accuracy Parameters Identification of Non-Linear Electrical Model for High-Energy Lithium-Ion Capacitor
    Li, Hao
    Jiang, Jiuchun
    Zhang, Weige
    Zhang, Linjing
    Yang, Ying
    Chen, Anci
    Fan, Xinyuan
    [J]. IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2021, 22 (01) : 651 - 660
  • [9] IDENTIFICATION OF PARAMETERS FOR POWER SYSTEM STABILITY ANALYSIS USING KALMAN FILTER
    NAMBA, M
    NISHIWAKI, T
    YOKOKAWA, S
    OHTSUKA, K
    UEKI, Y
    [J]. IEEE TRANSACTIONS ON POWER APPARATUS AND SYSTEMS, 1981, 100 (07): : 3304 - 3311
  • [10] Estimation of Modal Parameters for Inter-Area Oscillations Analysis by a Machine Learning Approach with Offline Training
    Olivieri, Carlo
    de Paulis, Francesco
    Orlandi, Antonio
    Pisani, Cosimo
    Giannuzzi, Giorgio
    Salvati, Roberto
    Zaottini, Roberto
    [J]. ENERGIES, 2020, 13 (23)