Bernstein widths of Hardy-type operators in a non-homogeneous case

被引:7
作者
Edmunds, D. E.
Lang, J.
机构
[1] Ohio State Univ, Dept Math, Columbus, OH 43210 USA
[2] Univ Sussex, Dept Math, Brighton BN1 9RF, E Sussex, England
关键词
approximation and Bernstein numbers; pq-Laplacian; weighted Hardy-type operators; integral operators; weighted spaces;
D O I
10.1016/j.jmaa.2006.02.025
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let I = [a, b] subset of R, let 1 < p <= q < infinity, let u and v be positive functions with u is an element of L-p '(I), v is an element of L-q(I) and let T : L-p (I) -> L-q (I) be the Hardy-type operator given by [GRAPHIC] We show that the Bernstein numbers b(n) of T satisfy [GRAPHIC] where c(pq) is an explicit constant depending only on p and q. (c) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:1060 / 1076
页数:17
相关论文
共 20 条
[1]  
BOURGAIN J, 1989, LECT NOTES MATH, V1376, P176
[2]   SPECTRA OF NONLINEAR DIFFERENTIAL-EQUATIONS AND WIDTHS OF SOBOLEV CLASSES [J].
BUSLAEV, AP ;
TIKHOMIROV, VM .
MATHEMATICS OF THE USSR-SBORNIK, 1992, 71 (02) :427-446
[3]  
BUSLAYEV AP, 1992, DOKL AKAD NAUK+, V323, P202
[4]  
Drabek P., 1999, Differential Integral Equations, V12, P723
[5]  
Edmunds D. E., 1987, Spectral Theory and Differential Operators
[6]  
Edmunds D.E., 2004, HARDY OPERATORS FUNC
[7]  
Edmunds DE, 1997, STUD MATH, V124, P59
[8]   Behaviour of the approximation numbers of a Sobolev embedding in the one-dimensional case [J].
Edmunds, DE ;
Lang, J .
JOURNAL OF FUNCTIONAL ANALYSIS, 2004, 206 (01) :149-166
[9]   Remainder estimates for the approximation numbers of weighted hardy operators acting on L2 [J].
Edmunds, DE ;
Kerman, R ;
Lang, J .
JOURNAL D ANALYSE MATHEMATIQUE, 2001, 85 (1) :225-243
[10]  
Evans WD, 1998, STUD MATH, V130, P171