Raman studies of GaN/sapphire thin film heterostructures

被引:74
作者
Hushur, Anwar [1 ]
Manghnani, Murli H. [1 ]
Narayan, Jagdish [2 ]
机构
[1] Univ Hawaii, Hawaii Inst Geophys & Planetol, Honolulu, HI 96822 USA
[2] N Carolina State Univ, Dept Mat Sci & Engn, Raleigh, NC 27695 USA
基金
美国国家科学基金会;
关键词
gallium compounds; III-V semiconductors; MOCVD; nucleation; phonons; Raman spectra; sapphire; semiconductor thin films; tensile strength; GAN NUCLEATION; CUBIC GAN; OPTICAL PHONONS; HEXAGONAL GAN; SCATTERING; DEPOSITION; SAPPHIRE; GROWTH; LAYERS; EPITAXY;
D O I
10.1063/1.3213370
中图分类号
O59 [应用物理学];
学科分类号
摘要
Using Raman spectroscopy, we have studied the optical phonon modes of GaN nucleation layers with the thicknesses of 7 and 45 nm, grown on sapphire (0001) substrates by metal organic chemical vapor deposition at low temperatures (500-600 degrees C). These layers consisted of mixed hexagonal and cubic phases. The Raman results from mixed phases were compared with those from pure hexagonal layers which were grown at higher temperatures over 1000 degrees C. The E-2(Pi) and A(1)(LO) phonon modes are observed at 548 and 733 cm(-1) for 45 nm thick nucleation layer, while the silent low-frequency B-1 mode which is forbidden in good quality hexagonal GaN is observed at 314 cm(-1). The presence of the strong hexagonal modes for GaN nucleation layers of 45 nm thick confirms the crystalline nature of the GaN nucleation layer and dominant hexagonal phase in this mixed cubic-hexagonal nucleation layer. The observed frequencies are shifted with respect to the corresponding A(1) and E-2 phonon modes in hexagonal GaN. The decrease in mode frequency implies the presence of in-plane tensile strain in these GaN nucleation layers of 45 nm thick. The Raman scattering spectra taken from different positions on the sample show similar spectral features, indicating that the GaN nucleation layers of 45 nm thick are homogeneous in micron scale.
引用
收藏
页数:5
相关论文
共 43 条
[1]   METALORGANIC VAPOR-PHASE EPITAXIAL-GROWTH OF A HIGH-QUALITY GAN FILM USING AN AIN BUFFER LAYER [J].
AMANO, H ;
SAWAKI, N ;
AKASAKI, I ;
TOYODA, Y .
APPLIED PHYSICS LETTERS, 1986, 48 (05) :353-355
[2]   POLARIZED RAMAN-SPECTRA IN GAN [J].
AZUHATA, T ;
SOTA, T ;
SUZUKI, K ;
NAKAMURA, S .
JOURNAL OF PHYSICS-CONDENSED MATTER, 1995, 7 (10) :L129-L133
[3]   Raman analysis of phonon lifetimes in AlN and GaN of wurtzite structure [J].
Bergman, L ;
Alexson, D ;
Murphy, PL ;
Nemanich, RJ ;
Dutta, M ;
Stroscio, MA ;
Balkas, C ;
Shin, H ;
Davis, RF .
PHYSICAL REVIEW B, 1999, 59 (20) :12977-12982
[4]   Ion-assisted deposition of amorphous GaN: Raman and optical properties [J].
Bittar, A ;
Trodahl, HJ ;
Kemp, NT ;
Markwitz, A .
APPLIED PHYSICS LETTERS, 2001, 78 (05) :619-621
[5]   RAMAN-SCATTERING IN THIN-FILM WAVEGUIDES [J].
BURNS, G ;
DACOL, F ;
MARINACE, JC ;
SCOTT, BA ;
BURSTEIN, E .
APPLIED PHYSICS LETTERS, 1973, 22 (08) :356-357
[6]   1ST ORDER RAMAN-SCATTERING IN GAN [J].
CINGOLANI, A ;
FERRARA, M ;
LUGARA, M ;
SCAMARCIO, G .
SOLID STATE COMMUNICATIONS, 1986, 58 (11) :823-824
[7]   Raman and photoluminescence studies of biaxial strain in GaN epitaxial layers grown on 6H-SiC [J].
Davydov, VY ;
Averkiev, NS ;
Goncharuk, IN ;
Nelson, DK ;
Nikitina, IP ;
Polkovnikov, AS ;
Smirnov, AN ;
Jacobsen, MA ;
Semchinova, OK .
JOURNAL OF APPLIED PHYSICS, 1997, 82 (10) :5097-5102
[8]   Phonon dispersion and Raman scattering in hexagonal GaN and AlN [J].
Davydov, VY ;
Kitaev, YE ;
Goncharuk, IN ;
Smirnov, AN ;
Graul, J ;
Semchinova, O ;
Uffmann, D ;
Smirnov, MB ;
Mirgorodsky, AP ;
Evarestov, RA .
PHYSICAL REVIEW B, 1998, 58 (19) :12899-12907
[9]   Micro-Raman scattering and microphotoluminescence of GaN thin films grown on sapphire by metal-organic chemical vapor deposition [J].
Feng, ZC .
OPTICAL ENGINEERING, 2002, 41 (08) :2022-2031
[10]   Raman scattering as a characterization tool for epitaxial GaN thin films grown on sapphire by turbo disk metal-organic chemical vapor deposition [J].
Feng, ZC ;
Schurman, M ;
Stall, RA ;
Pavlosky, M ;
Whitley, A .
APPLIED OPTICS, 1997, 36 (13) :2917-2922