All-vanadium dual circuit redox flow battery for renewable hydrogen generation and desulfurisation

被引:43
作者
Peljo, Pekka [1 ]
Vrubel, Heron [1 ]
Amstutz, Veronique [1 ]
Pandard, Justine [1 ]
Morgado, Joana [1 ,5 ]
Santasalo-Aarnio, Annukka [3 ]
Lloyd, David [2 ]
Gumy, Frederic [1 ]
Dennison, C. R. [1 ]
Toghill, Kathryn E. [4 ]
Girault, Hubert H. [1 ]
机构
[1] Ecole Polytech Fed Lausanne EPFL Valais Wallis, LEPA, Rue Ind 17,Case Postale 440, CH-1951 Sion, Switzerland
[2] Aalto Univ, Dept Chem, POB 16100, Aalto 0076, Finland
[3] Aalto Univ, Dept Mat Sci & Engn, POB 16100, Aalto 0076, Finland
[4] Univ Lancaster, Dept Chem, Lancaster LA1 4YB, England
[5] Norwegian Univ Sci & Technol, Dept Energy & Proc Engn, N-7491 Trondheim, Norway
关键词
ELECTROCHEMICAL STABILITY; MOLYBDENUM BORIDE; ENERGY-STORAGE; SULFUR CYCLE; EVOLUTION; CARBIDE; ELECTROLYSIS; CATALYSTS; MO2C; OXIDATION;
D O I
10.1039/c5gc02196k
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
An all-vanadium dual circuit redox flow battery is an electrochemical energy storage system able to function as a conventional battery, but also to produce hydrogen and perform desulfurization when a surplus of electricity is available by chemical discharge of the battery electrolytes. The hydrogen reactor chemically discharging the negative electrolyte has been designed and scaled up to kW scale, while different options to discharge the positive electrolyte have been evaluated, including oxidation of hydrazine, SO2 and H2S. The system is well suited to convert sulfur dioxide and hydrogen sulfide to harmless compounds while producing hydrogen, with overall system efficiencies from 50 to 70% for hydrogen production.
引用
收藏
页码:1785 / 1797
页数:13
相关论文
共 47 条
[21]   H2 production through electro-oxidation of SO2: identifying the fundamental limitations [J].
Kriek, Roelof J. ;
Rossmeisl, Jan ;
Siahrostami, Samira ;
Bjorketun, Marten E. .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2014, 16 (20) :9572-9579
[22]   Vanadium Redox-Flow-Battery Electrolyte Preparation with Reducing Agents [J].
Li, W. N. ;
Zaffou, R. ;
Shovlin, C. ;
Perry, M. ;
She, Y. .
STATIONARY AND LARGE SCALE ELECTRICAL ENERGY STORAGE 2, 2013, 53 (07) :93-99
[23]   A nanoporous molybdenum carbide nanowire as an electrocatalyst for hydrogen evolution reaction [J].
Liao, Lei ;
Wang, Sinong ;
Xiao, Jingjing ;
Bian, Xiaojun ;
Zhang, Yahong ;
Scanlon, Micheal D. ;
Hu, Xile ;
Tang, Yi ;
Liu, Baohong ;
Girault, Hubert H. .
ENERGY & ENVIRONMENTAL SCIENCE, 2014, 7 (01) :387-392
[24]   Steam reforming of methanol using supported Mo2C catalysts [J].
Lin, Sean S. -Y ;
Thomson, William J. ;
Hagensen, Timothy J. ;
Ha, Su Y. .
APPLIED CATALYSIS A-GENERAL, 2007, 318 :121-127
[25]   Preparation of a cost-effective, scalable and energy efficient all-copper redox flow battery [J].
Lloyd, David ;
Magdalena, Eva ;
Sanz, Laura ;
Murtomaki, Lasse ;
Kontturi, Kyosti .
JOURNAL OF POWER SOURCES, 2015, 292 :87-94
[26]   Modeling and experimental assessment of Nafion membrane properties used in SO2 depolarized water electrolysis for hydrogen production [J].
Lokkiluoto, Anu ;
Gasik, Michael M. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2013, 38 (01) :10-19
[27]   SULFUR-DIOXIDE DEPOLARIZED ELECTROLYSIS FOR HYDROGEN-PRODUCTION - DEVELOPMENT STATUS [J].
LU, PWT ;
AMMON, RL .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 1982, 7 (07) :563-575
[28]  
Muller H., 2000, SULFURIC ACID SULFUR, V35, P141
[29]   Flow Batteries [J].
Nguyen, Trung ;
Savinell, Robert F. .
ELECTROCHEMICAL SOCIETY INTERFACE, 2010, 19 (03) :54-56
[30]   The Chemistry of Redox-Flow Batteries [J].
Noack, Jens ;
Roznyatovskaya, Nataliya ;
Herr, Tatjana ;
Fischer, Peter .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2015, 54 (34) :9775-9808