ON THE DIVISIBILITY OF THE CLASS NUMBER OF IMAGINARY QUADRATIC NUMBER FIELDS

被引:19
作者
Louboutin, Stephane R. [1 ]
机构
[1] Inst Math Luminy, UMR 6206, F-13288 Marseille 9, France
关键词
Class number; imaginary quadratic field; divisibility;
D O I
10.1090/S0002-9939-09-10021-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove that if at least one of the prime divisors of an odd integer U >= 3 is equal to 3 mod 4, then the ideal class group of the imaginary quadratic field Q(root 1-4U(n)) contains an element of order n.
引用
收藏
页码:4025 / 4028
页数:4
相关论文
共 8 条
[1]  
Ankeny N., 1955, Pacific J. Math., V5, P321, DOI DOI 10.2140/PJM.1955.5.321
[2]   Solving thue equations of high degree [J].
Bilu, Y ;
Hanrot, G .
JOURNAL OF NUMBER THEORY, 1996, 60 (02) :373-392
[3]   On the class number of certain imaginary quadratic fields [J].
Cohn, JHE .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2002, 130 (05) :1275-1277
[4]   KANT V4 [J].
Daberkow, M ;
Fieker, C ;
Kluners, J ;
Pohst, M ;
Roegner, K ;
Schornig, M ;
Wildanger, K .
JOURNAL OF SYMBOLIC COMPUTATION, 1997, 24 (3-4) :267-283
[5]   SOME RESULTS ON MORDELL-WEIL GROUP OF JACOBIAN OF FERMAT CURVE [J].
GROSS, BH ;
ROHRLICH, DE .
INVENTIONES MATHEMATICAE, 1978, 44 (03) :201-224
[6]   NOTE ON THE DIVISIBILITY OF THE CLASS NUMBER OF CERTAIN IMAGINARY QUADRATIC FIELDS [J].
Kishi, Yasuhiro .
GLASGOW MATHEMATICAL JOURNAL, 2009, 51 :187-191
[7]  
MURTY MR, 1999, MATH APPL, V467, P229
[8]   Divisibility of class numbers of imaginary quadratic fields [J].
Soundararajan, K .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2000, 61 :681-690