Derivative non-linear Schrodinger equation: Singular manifold method and Lie symmetries

被引:6
作者
Albares, P. [1 ]
Estevez, P. G. [1 ]
Lejarreta, J. D. [2 ]
机构
[1] Univ Salamanca, Dept Fis Fundamental, Salamanca, Spain
[2] Univ Salamanca, Dept Fis Aplicada, Salamanca, Spain
关键词
Integrability; Derivative non-linear Schrodinger equation; Singular manifold method; Lax pair; Darboux transformations; Rational solitons; Lie symmetries; Similarity reductions; SELF-PHASE MODULATION; GLOBAL WELL-POSEDNESS; WATER-WAVE EQUATION; MULTISOLITON SOLUTIONS; PARALLEL PROPAGATION; HYDROMAGNETIC-WAVES; PERIODIC-SOLUTIONS; DNLS EQUATION; ALFVEN WAVES; ROGUE WAVES;
D O I
10.1016/j.amc.2021.126089
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present a generalized study and characterization of the integrability properties of the derivative non-linear Schrodinger equation in 1 + 1 dimensions. A Lax pair is derived for this equation by means of a Miura transformation and the singular manifold method. This procedure, together with the Darboux transformations, allow us to construct a wide class of rational soliton-like solutions. Clasical Lie symmetries have also been computed and similarity reductions have been analyzed and discussed. (C) 2021 Elsevier Inc. All rights reserved.
引用
收藏
页数:19
相关论文
共 72 条
[1]  
Ablowitz M. J, 1991, London mathematical society lecture note series, V149
[2]  
ABLOWITZ MJ, 1974, STUD APPL MATH, V53, P249
[3]  
Agrawal G. P, 2012, NONLINEAR FIBERS OPT
[4]   Solitons in a nonlinear model of spin transport in helical molecules [J].
Albares, P. ;
Diaz, E. ;
Cervero, Jose M. ;
Dominguez-Adame, F. ;
Diez, E. ;
Estevez, P. G. .
PHYSICAL REVIEW E, 2018, 97 (02)
[5]   Lumps and rogue waves of generalized Nizhnik-Novikov-Veselov equation [J].
Albares, P. ;
Estevez, P. G. ;
Radha, R. ;
Saranya, R. .
NONLINEAR DYNAMICS, 2017, 90 (04) :2305-2315
[6]   NON-LINEAR ASYMMETRIC SELF-PHASE MODULATION AND SELF-STEEPENING OF PULSES IN LONG OPTICAL-WAVEGUIDES [J].
ANDERSON, D ;
LISAK, M .
PHYSICAL REVIEW A, 1983, 27 (03) :1393-1398
[7]  
[Anonymous], 1888, Theorie der Transformationsgruppen Abschn
[8]  
Bluman G. W., 2013, Symmetries and Differential Equations, V81
[9]   The Hamiltonian formalism of the DNLS equation with a nonvanished boundary value [J].
Cai, Hao ;
Huang, Nian-Ning .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2006, 39 (18) :5007-5014
[10]   ON THE INFINITE-DIMENSIONAL SYMMETRY GROUP OF THE DAVEY-STEWARTSON EQUATIONS [J].
CHAMPAGNE, B ;
WINTERNITZ, P .
JOURNAL OF MATHEMATICAL PHYSICS, 1988, 29 (01) :1-8