Compatible Dubrovin-Novikov Hamiltonian operators, Lie derivative, and integrable systems of hydrodynamic type

被引:9
作者
Mokhov, OI [1 ]
机构
[1] RAS, LD Landau Theoret Phys Inst, Moscow 117901, Russia
关键词
compatible Hamiltonian operators; systems of hydrodynamic type; Lie derivative; integrable hierarchies; local Poisson brackets of hydrodynamic type; flat pencils of metrics;
D O I
10.1023/A:1021155028895
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We prove that two Dubrovin-Novikov Hamiltonian operators are compatible if and only if one of these operators is the Lie derivative of the other operator along a certain vector field. We consider the class of flat manifolds, which correspond to arbitrary, pairs of compatible Dubrovin-Novikov Hamiltonian operators. Locally, these manifolds are defined by solutions of a system of nonlinear equations, which is integrable by the method of the inverse scattering problem. We construct the integrable hierarchies generated by arbitrary, pairs of compatible Dubrovin-Novikov Hamiltonian operators.
引用
收藏
页码:1557 / 1564
页数:8
相关论文
共 31 条
[1]  
Dorfman I., 1993, NONLINEAR SCI THEORY
[2]  
DUBROVIN B, 1998, 2598FM SISSA
[3]  
Dubrovin B., 1996, LECT NOTES MATH, V1620, P120
[4]  
DUBROVIN B, 1993, SISSA2993FM
[5]  
DUBROVIN B, 1993, HEPTH9303152
[6]  
DUBROVIN B, 1998, MATHDG9803106
[7]  
Dubrovin B., 1983, SOV MATH DOKL, V270, P665
[8]  
DUBROVIN BA, 1994, HEPTH9407018
[9]  
Ferapontov E V., 1995, Topics in Topology and Mathematical Physics (American Mathematical Society Translations: Series 2 vol 170), P33, DOI [10.1090/trans2/170/03, DOI 10.1090/TRANS2/170/03]
[10]   DIFFERENTIAL GEOMETRY OF NONLOCAL HAMILTONIAN OPERATORS OF HYDRODYNAMIC TYPE [J].
FERAPONTOV, EV .
FUNCTIONAL ANALYSIS AND ITS APPLICATIONS, 1991, 25 (03) :195-204