Graph designs for the eight-edge five-vertex graphs

被引:4
作者
Colbourn, Charles J. [2 ]
Ge, Gennian [1 ]
Ling, Alan C. H. [3 ]
机构
[1] Zhejiang Univ, Dept Math, Hangzhou 310027, Zhejiang, Peoples R China
[2] Arizona State Univ, Dept Comp Sci & Engn, Tempe, AZ 85287 USA
[3] Univ Vermont, Dept Comp Sci, Burlington, VT 05405 USA
基金
中国国家自然科学基金;
关键词
Decomposition; Graph designs; G(20-)designs; G(21)-designs; EXISTENCE; NETWORKS;
D O I
10.1016/j.disc.2008.10.015
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The existence of graph designs for the two nonisomorphic graphs on five vertices and eight edges is determined in the case of index one, with three possible exceptions in total. It is established that for the unique graph with vertex sequence (3, 3, 3, 3, 4), a graph design of order n exists exactly when n equivalent to 0.1 (mod 16) and n not equal 16, with the possible exception of n = 48. For the unique graph with vertex sequence (2, 3, 3, 4, 4), a graph design of order n exists exactly when n equivalent to 0, 1 (mod 16), with the possible exceptions of n is an element of {32, 48}. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:6440 / 6445
页数:6
相关论文
共 10 条
[1]  
ABEL RJR, 2006, CRC HDB COMBINATORIA, P247
[2]   A survey on the existence of G-designs [J].
Adams, Peter ;
Bryant, Darryn ;
Buchanan, Melinda .
JOURNAL OF COMBINATORIAL DESIGNS, 2008, 16 (05) :373-410
[3]  
Bermond J.C., 1980, Ars Combinatoria, V10, P211
[4]  
Chang YX, 2002, ARS COMBINATORIA, V65, P237
[5]  
Colbourn CJ, 2001, NETWORKS, V37, P107, DOI 10.1002/1097-0037(200103)37:2<107::AID-NET6>3.0.CO
[6]  
2-A
[7]  
Dinitz J. H., 2006, CRC HDB COMBINATORIA, P477
[8]   On the existence of (K5\e)-designs with application to optical networks [J].
Ge, Gennian ;
Ling, Alan C. H. .
SIAM JOURNAL ON DISCRETE MATHEMATICS, 2007, 21 (04) :851-864
[9]  
GREIG M, 2006, CRC HDB COMBINATORIA, P236
[10]  
RODGER CA, 1990, MATEMATICHE, V45, P119