On-field player workload exposure and knee injury risk monitoring via deep learning

被引:38
作者
Johnson, William R. [1 ]
Mian, Ajmal [2 ]
Lloyd, David G. [3 ,4 ]
Alderson, Jacqueline A. [1 ,5 ]
机构
[1] Univ Western Australia, Sch Human Sci Exercise & Sport Sci, Perth, WA, Australia
[2] Univ Western Australia, Dept Comp Sci & Software Engn, Perth, WA, Australia
[3] Griffith Univ, Menzies Hlth Inst Queensland, Gold Coast, Australia
[4] Griffith Univ, Sch Allied Hlth Sci, Gold Coast, Australia
[5] Auckland Univ Technol, SPRINZ, Auckland, New Zealand
基金
澳大利亚国家健康与医学研究理事会;
关键词
Biomechanics; Wearable sensors; Computer vision; Motion capture; Sports analytics; GROUND REACTION FORCES; NEURAL-NETWORK; KINEMATICS; PREDICTION; MODEL; JOINT; ACCELEROMETER; VALIDITY; CONTACT;
D O I
10.1016/j.jbiomech.2019.07.002
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
In sports analytics, an understanding of accurate on-field 3D knee joint moments (KJM) could provide an early warning system for athlete workload exposure and knee injury risk. Traditionally, this analysis has relied on captive laboratory force plates and associated downstream biomechanical modeling, and many researchers have approached the problem of portability by extrapolating models built on linear statistics. An alternative approach would be to capitalize on recent advances in deep learning. In this study, using the pre-trained CaffeNet convolutional neural network (CNN) model, multivariate regression of marker-based motion capture to 3D KJM for three sports-related movement types were compared. The strongest overall mean correlation to source modeling of 0.8895 was achieved over the initial 33% of stance phase for sidestepping. The accuracy of these mean predictions of the three critical KJM associated with anterior cruciate ligament (ACL) injury demonstrate the feasibility of on-field knee injury assessment using deep learning in lieu of laboratory embedded force plates. This multidisciplinary research approach significantly advances machine representation of real-world physical models with practical application for both community and professional level athletes. (C) 2019 Elsevier Ltd. All rights reserved.
引用
收藏
页码:185 / 193
页数:9
相关论文
共 58 条
[1]  
Abadi Martin, 2015, TENSORFLOW LARGE SCA
[2]  
Aljaaf AJ, 2016, IEEE IJCNN, P5168, DOI 10.1109/IJCNN.2016.7727882
[3]  
[Anonymous], J APPL BIOMECH
[4]  
[Anonymous], P 11 INT C UB INF MA
[5]  
[Anonymous], ISBS P ARCH
[6]  
[Anonymous], ADV NEURAL INFORM PR
[7]  
[Anonymous], J SCI MED SPORT
[8]  
[Anonymous], BIOMECHANICS HUMAN M
[9]  
[Anonymous], 2016, SENSORS
[10]  
[Anonymous], 2017, ARXIV170303492