Fully coupled electrothermal and mechanical simulation of the production of complex shapes by spark plasma sintering

被引:8
作者
Van der Laan, A. [1 ,2 ]
Epherre, R. [2 ]
Chevallier, G. [1 ]
Beynet, Y. [2 ]
Weibel, A. [1 ]
Estournes, C. [1 ]
机构
[1] Univ Toulouse 3 Paul Sabatier, Univ Toulouse, CIRIMAT, CNRS, 118 Route Narbonne, F-31062 Toulouse 9, France
[2] Norimat, 51 Rue Innovat, F-31670 Labege, France
关键词
Spark plasma sintering; Numerical modelling; Complex shapes; Creep parameters;
D O I
10.1016/j.jeurceramsoc.2021.02.010
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The obtention of an accurate mechanical model of the spark plasma sintering (SPS) requires the identification of creep parameters. Those parameters are usually determined experimentally, which involves several tests and could be a source of error for the model predictions. A numerical identification, based on only one SPS experiment per material, allowed the determination of the creep parameters of Al2O3 and TiAl samples. The resulting mechanical model was then coupled with an electro-thermal model of the system to obtain a fully coupled simulation of the SPS. This model can predict the densification behavior not only of simple pellets, but also of complex shape configurations. It accurately predicts the density gradients inside the complex sintered parts as well as the interface distortion during sintering. Thus, numerical simulation can be used as an efficient predictive tool to obtain fully dense objects with the desired geometry.
引用
收藏
页码:4252 / 4263
页数:12
相关论文
共 28 条
[1]   FINITE-ELEMENT SIMULATION OF HOT ISOSTATIC PRESSING OF METAL POWDERS [J].
ABOUAF, M ;
CHENOT, JL ;
RAISSON, G ;
BAUDUIN, P .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1988, 25 (01) :191-212
[2]  
[Anonymous], 2012, ADV APPL CERAM, V111, P280, DOI [10.1179/1743676111Y.0000000074, DOI 10.1179/1743676111Y.0000000074]
[3]   Spark plasma sintering of a commercially available granulated zirconia powder: I. Sintering path and hypotheses about the mechanism(s) controlling densification [J].
Bernard-Granger, Guillaume ;
Guizard, Christian .
ACTA MATERIALIA, 2007, 55 (10) :3493-3504
[4]   Application of Electric Current-Assisted Sintering Techniques for the Processing of Advanced Materials [J].
Bram, Martin ;
Laptev, Alexander M. ;
Mishra, Tarini Prasad ;
Nur, Kushnuda ;
Kindelmann, Moritz ;
Ihrig, Martin ;
da Silva, Joao Gustavo ;
Steinert, Ralf ;
Buchkremer, Hans Peter ;
Litnovsky, Andrey ;
Klein, Felix ;
Gonzalez-Julian, Jesus ;
Guillon, Olivier .
ADVANCED ENGINEERING MATERIALS, 2020, 22 (06)
[5]   MICROSTRUCTURE AND CREEP-PROPERTIES OF ALUMINA/ZIRCONIA CERAMICS [J].
CALDERONMORENO, JM ;
DEARELLANOLOPEZ, AR ;
DOMINGUEZRODRIGUEZ, A ;
ROUTBORT, JL .
JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 1995, 15 (10) :983-988
[6]   Sintering and densification of nanocrystalline ceramic oxide powders: a review 2 [J].
Chaim, R. ;
Levin, M. ;
Shlayer, A. ;
Estournes, C. .
ADVANCES IN APPLIED CERAMICS, 2008, 107 (03) :159-169
[7]   Creep behaviour of alumina, zirconia and zirconia-toughened alumina [J].
Chevalier, J ;
Olagnon, C ;
Fantozzi, G ;
Gros, H .
JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 1997, 17 (06) :859-864
[8]   Fabricating geometrically-complex B4C ceramic components by robocasting and pressureless spark plasma sintering [J].
Eqtesadi, Siamak ;
Motealleh, Azadeh ;
Perera, Fidel H. ;
Miranda, Pedro ;
Pajares, Antonia ;
Wendelbo, Rune ;
Guiberteau, Fernando ;
Ortiz, Angel L. .
SCRIPTA MATERIALIA, 2018, 145 :14-18
[9]   Electric current activated/assisted sintering (ECAS): a review of patents 1906-2008 [J].
Grasso, Salvatore ;
Sakka, Yoshio ;
Maizza, Giovanni .
SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS, 2009, 10 (05)
[10]   Field-Assisted Sintering Technology/Spark Plasma Sintering: Mechanisms, Materials, and Technology Developments [J].
Guillon, Olivier ;
Gonzalez-Julian, Jesus ;
Dargatz, Benjamin ;
Kessel, Tobias ;
Schierning, Gabi ;
Raethel, Jan ;
Herrmann, Mathias .
ADVANCED ENGINEERING MATERIALS, 2014, 16 (07) :830-849