Machine learning approaches for crop improvement: Leveraging phenotypic and genotypic big data

被引:102
作者
Tong, Hao [1 ,2 ,3 ]
Nikoloski, Zoran [1 ,2 ,3 ]
机构
[1] Univ Potsdam, Inst Biochem & Biol, Bioinformat Grp, Potsdam, Germany
[2] Ctr Plant Syst Biol & Biotechnol, Bioinformat & Math Modeling Dept, Plovdiv, Bulgaria
[3] Max Planck Inst Mol Plant Physiol, Syst Biol & Math Modeling Grp, Potsdam, Germany
关键词
Genomic selection; Genomic prediction; Machine learning; Multiple traits; Multi-omics; GxE interaction; GENOMIC-ENABLED PREDICTION; ENVIRONMENT INTERACTION; ASSISTED PREDICTION; HYBRID PERFORMANCE; GENETIC VALUE; MULTI-TRAIT; MOLECULAR MARKERS; R PACKAGE; SELECTION; REGRESSION;
D O I
10.1016/j.jplph.2020.153354
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Highly efficient and accurate selection of elite genotypes can lead to dramatic shortening of the breeding cycle in major crops relevant for sustaining present demands for food, feed, and fuel. In contrast to classical approaches that emphasize the need for resource-intensive phenotyping at all stages of artificial selection, genomic selection dramatically reduces the need for phenotyping. Genomic selection relies on advances in machine learning and the availability of genotyping data to predict agronomically relevant phenotypic traits. Here we provide a systematic review of machine learning approaches applied for genomic selection of single and multiple traits in major crops in the past decade. We emphasize the need to gather data on intermediate phenotypes, e.g. metabolite, protein, and gene expression levels, along with developments of modeling techniques that can lead to further improvements of genomic selection. In addition, we provide a critical view of factors that affect genomic selection, with attention to transferability of models between different environments. Finally, we highlight the future aspects of integrating high-throughput molecular phenotypic data from omics technologies with biological networks for crop improvement.
引用
收藏
页数:13
相关论文
共 126 条
[1]   Conventional and Molecular Techniques from Simple Breeding to Speed Breeding in Crop Plants: Recent Advances and Future Outlook [J].
Ahmar, Sunny ;
Gill, Rafaqat Ali ;
Jung, Ki-Hong ;
Faheem, Aroosha ;
Qasim, Muhammad Uzair ;
Mubeen, Mustansar ;
Zhou, Weijun .
INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2020, 21 (07)
[2]   Genetic diversity, SNP-trait associations and genomic selection accuracy in a west African collection of Kersting's groundnut [Macrotyloma geocarpum(Harms) Marechal & Baudet] [J].
Akohoue, Felicien ;
Achigan-Dako, Enoch Gbenato ;
Sneller, Clay ;
Van Deynze, Allen ;
Sibiya, Julia .
PLOS ONE, 2020, 15 (06)
[3]   An approach for classification of highly imbalanced data using weighting and undersampling [J].
Anand, Ashish ;
Pugalenthi, Ganesan ;
Fogel, Gary B. ;
Suganthan, P. N. .
AMINO ACIDS, 2010, 39 (05) :1385-1391
[4]   Pea genomic selection for Italian environments [J].
Annicchiarico, Paolo ;
Nazzicari, Nelson ;
Pecetti, Luciano ;
Romani, Massimo ;
Russi, Luigi .
BMC GENOMICS, 2019, 20 (1)
[5]   GenomicLand: Software for genome-wide association studies and genomic prediction [J].
Azevedo, Camila Ferreira ;
Nascimento, Moyses ;
Fontes, Vitor Cunha ;
Fonseca e Silva, Fabyano ;
Vilela de Resende, Marcos Deon ;
Cruz, Cosme Damiao .
ACTA SCIENTIARUM-AGRONOMY, 2019, 41
[6]   Fitting Linear Mixed-Effects Models Using lme4 [J].
Bates, Douglas ;
Maechler, Martin ;
Bolker, Benjamin M. ;
Walker, Steven C. .
JOURNAL OF STATISTICAL SOFTWARE, 2015, 67 (01) :1-48
[7]   Genomic Selection for Processing and End-Use Quality Traits in the CIMMYT Spring Bread Wheat Breeding Program [J].
Battenfield, Sarah D. ;
Guzman, Carlos ;
Gaynor, R. Chris ;
Singh, Ravi P. ;
Pena, Roberto J. ;
Dreisigacker, Susanne ;
Fritz, Allan K. ;
Poland, Jesse A. .
PLANT GENOME, 2016, 9 (02)
[8]   Metabolomic characterization of experimental ovarian cancer ascitic fluid [J].
Bharti, Santosh K. ;
Wildes, Flonne ;
Hung, Chien-Fu ;
Wu, T. C. ;
Bhujwalla, Zaver M. ;
Penet, Marie-France .
METABOLOMICS, 2017, 13 (10)
[9]   Multi-trait Genomic Prediction Model Increased the Predictive Ability for Agronomic and Malting Quality Traits in Barley (Hordeum vulgare L.) [J].
Bhatta, Madhav ;
Gutierrez, Lucia ;
Cammarota, Lorena ;
Cardozo, Fernanda ;
German, Silvia ;
Gomez-Guerrero, Blanca ;
Pardo, Maria Fernanda ;
Lanaro, Valeria ;
Sayas, Mercedes ;
Castro, Ariel J. .
G3-GENES GENOMES GENETICS, 2020, 10 (03) :1113-1124
[10]   Genome-Wide Association Mapping and Genomic Selection for Alfalfa (Medicago sativa) Forage Quality Traits [J].
Biazzi, Elisa ;
Nazzicari, Nelson ;
Pecetti, Luciano ;
Brummer, E. Charles ;
Palmonari, Alberto ;
Tava, Aldo ;
Annicchiarico, Paolo .
PLOS ONE, 2017, 12 (01)