Optically excited structural transition in atomic wires on surfaces at the quantum limit

被引:112
作者
Frigge, T. [1 ,2 ]
Hafke, B. [1 ,2 ]
Witte, T. [1 ,2 ]
Krenzer, B. [1 ,2 ]
Streubuehr, C. [1 ,2 ]
Syed, A. Samad [1 ,2 ]
Trontl, V. Miksic [1 ,2 ]
Avigo, I. [1 ,2 ]
Zhou, P. [1 ,2 ]
Ligges, M. [1 ,2 ]
von der Linde, D. [1 ,2 ]
Bovensiepen, U. [1 ,2 ]
Horn-von Hoegen, M. [1 ,2 ]
Wippermann, S. [3 ]
Luecke, A. [4 ]
Gerstmann, U. [4 ]
Schmidt, W. G. [4 ]
机构
[1] Univ Duisburg Essen, Fak Phys, Lotharstr 1, D-47057 Duisburg, Germany
[2] Univ Duisburg Essen, Ctr Nanointegrat CENIDE, Lotharstr 1, D-47057 Duisburg, Germany
[3] Max Planck Inst Eisenforschung, Max Planck Str 1, D-40237 Dusseldorf, Germany
[4] Univ Paderborn, Lehrstuhl Theoret Mat Phys, D-33095 Paderborn, Germany
关键词
CHARGE-DENSITY-WAVE; ULTRAFAST ELECTRON CRYSTALLOGRAPHY; DIFFRACTION; PHASE; MOTIONS;
D O I
10.1038/nature21432
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Transient control over the atomic potential-energy landscapes of solids could lead to new states of matter and to quantum control of nuclear motion on the timescale of lattice vibrations. Recently developed ultrafast time-resolved diffraction techniques(1) combine ultrafast temporal manipulation with atomic-scale spatial resolution and femtosecond temporal resolution. These advances have enabled investigations of photo-induced structural changes in bulk solids that often occur on timescales as short as a few hundred femtoseconds(2-6). In contrast, experiments at surfaces and on single atomic layers such as graphene report timescales of structural changes that are orders of magnitude longer(7-9). This raises the question of whether the structural response of low-dimensional materials to femtosecond laser excitation is, in general, limited. Here we show that a photo-induced transition from the low-to high-symmetry state of a charge density wave in atomic indium (In) wires supported by a silicon (Si) surface takes place within 350 femtoseconds. The optical excitation breaks and creates In-In bonds, leading to the non-thermal excitation of soft phonon modes, and drives the structural transition in the limit of critically damped nuclear motion through coupling of these soft phonon modes to a manifold of surface and interface phonons that arise from the symmetry breaking at the silicon surface. This finding demonstrates that carefully tuned electronic excitations can create non-equilibrium potential energy surfaces that drive structural dynamics at interfaces in the quantum limit (that is, in a regime in which the nuclear motion is directed and deterministic)(8). This technique could potentially be used to tune the dynamic response of a solid to optical excitation, and has widespread potential application, for example in ultrafast detectors(10,11).
引用
收藏
页码:207 / +
页数:9
相关论文
共 35 条
[1]   4D visualization of transitional structures in phase transformations by electron diffraction [J].
Baum, Peter ;
Yang, Ding-Shyue ;
Zewail, Ahmed H. .
SCIENCE, 2007, 318 (5851) :788-792
[2]   Breaking resolution limits in ultrafast electron diffraction and microscopy [J].
Baum, Peter ;
Zewail, Ahmed H. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2006, 103 (44) :16105-16110
[3]   Elementary relaxation processes investigated by femtosecond photoelectron spectroscopy of two-dimensional materials [J].
Bovensiepen, Uwe ;
Kirchmann, Patrick S. .
LASER & PHOTONICS REVIEWS, 2012, 6 (05) :589-606
[4]   GROUND-STATES OF CONSTRAINED SYSTEMS - APPLICATION TO CERIUM IMPURITIES [J].
DEDERICHS, PH ;
BLUGEL, S ;
ZELLER, R ;
AKAI, H .
PHYSICAL REVIEW LETTERS, 1984, 53 (26) :2512-2515
[5]   Snapshots of cooperative atomic motions in the optical suppression of charge density waves [J].
Eichberger, Maximilian ;
Schaefer, Hanjo ;
Krumova, Marina ;
Beyer, Markus ;
Demsar, Jure ;
Berger, Helmuth ;
Moriena, Gustavo ;
Sciaini, German ;
Miller, R. J. Dwayne .
NATURE, 2010, 468 (7325) :799-802
[6]   Direct observation of electron thermalization and electron-phonon coupling in photoexcited bismuth [J].
Faure, J. ;
Mauchain, J. ;
Papalazarou, E. ;
Marsi, M. ;
Boschetto, D. ;
Timrov, I. ;
Vast, N. ;
Ohtsubo, Y. ;
Arnaud, B. ;
Perfetti, L. .
PHYSICAL REVIEW B, 2013, 88 (07)
[7]   Surface phonons of the Si(111):In-(4x1) and (8x2) phases [J].
Fleischer, K. ;
Chandola, S. ;
Esser, N. ;
Richter, W. ;
McGilp, J. F. .
PHYSICAL REVIEW B, 2007, 76 (20)
[8]   Grand challenges in basic energy sciences [J].
Fleming, Graham R. ;
Ratner, Mark A. .
PHYSICS TODAY, 2008, 61 (07) :28-33
[9]   QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials [J].
Giannozzi, Paolo ;
Baroni, Stefano ;
Bonini, Nicola ;
Calandra, Matteo ;
Car, Roberto ;
Cavazzoni, Carlo ;
Ceresoli, Davide ;
Chiarotti, Guido L. ;
Cococcioni, Matteo ;
Dabo, Ismaila ;
Dal Corso, Andrea ;
de Gironcoli, Stefano ;
Fabris, Stefano ;
Fratesi, Guido ;
Gebauer, Ralph ;
Gerstmann, Uwe ;
Gougoussis, Christos ;
Kokalj, Anton ;
Lazzeri, Michele ;
Martin-Samos, Layla ;
Marzari, Nicola ;
Mauri, Francesco ;
Mazzarello, Riccardo ;
Paolini, Stefano ;
Pasquarello, Alfredo ;
Paulatto, Lorenzo ;
Sbraccia, Carlo ;
Scandolo, Sandro ;
Sclauzero, Gabriele ;
Seitsonen, Ari P. ;
Smogunov, Alexander ;
Umari, Paolo ;
Wentzcovitch, Renata M. .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2009, 21 (39)
[10]   Soft phonon, dynamical fluctuations, and a reversible phase transition:: Indium chains on silicon [J].
González, C ;
Flores, F ;
Ortega, J .
PHYSICAL REVIEW LETTERS, 2006, 96 (13) :1-4