Modeling Wolbachia infection in mosquito population via discrete dynamical models

被引:90
作者
Yu, Jianshe [1 ,2 ]
Zheng, Bo [1 ,2 ]
机构
[1] Guangzhou Univ, Ctr Appl Math, Guangzhou 510006, Guangdong, Peoples R China
[2] Guangzhou Univ, Coll Math & Informat Sci, Guangzhou 510006, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
Wolbachia; cytoplasmic incompatibility; maternal transmission leakage rate; the release threshold; unstable equilibria; AEDES-ALBOPICTUS DIPTERA; CYTOPLASMIC INCOMPATIBILITY; DENGUE; SPREAD; ESTABLISHMENT; BIOLOGY;
D O I
10.1080/10236198.2019.1669578
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We formulate discrete dynamical models to study Wolbachia infection persistence by releasing Wolbachia-infected mosquitoes, which display rich dynamics including bistable, semi-stable and globally asymptotically stable equilibria. Our analysis shows a maximal maternal leakage rate threshold, denoted by , such that infected mosquitoes can only persist if it is not exceeded by . When , we find the Wolbachia infection frequency threshold, denoted by , such that the infected mosquitoes can persist provided that the initial infection frequency . For the case when , we find the release rate threshold, denoted by , for , the Wolbachia infection frequency threshold is reduced, and for , the threshold infection frequency is further lowered to 0 which implies that Wolbachia persistence is always successful for any initial infection frequency above 0.
引用
收藏
页码:1549 / 1567
页数:19
相关论文
共 41 条
  • [11] Wolbachia spread dynamics in stochastic environments
    Hu, Linchao
    Huang, Mugen
    Tang, Moxun
    Yu, Jianshe
    Zheng, Bo
    [J]. THEORETICAL POPULATION BIOLOGY, 2015, 106 : 32 - 44
  • [12] Qualitative analysis for a Wolbachia infection model with diffusion
    Huang MuGen
    Yu JianShe
    Hu LinChao
    Zheng Bo
    [J]. SCIENCE CHINA-MATHEMATICS, 2016, 59 (07) : 1249 - 1266
  • [13] Wolbachia infection dynamics by reaction-diffusion equations
    Huang MuGen
    Tang MoXun
    Yu JianShe
    [J]. SCIENCE CHINA-MATHEMATICS, 2015, 58 (01) : 77 - 96
  • [14] Rapid Sequential Spread of Two Wolbachia Variants in Drosophila simulans
    Kriesner, Peter
    Hoffmann, Ary A.
    Lee, Siu F.
    Turelli, Michael
    Weeks, Andrew R.
    [J]. PLOS PATHOGENS, 2013, 9 (09)
  • [15] Li Jia, 2015, J Biol Dyn, V9, P1, DOI 10.1080/17513758.2014.977971
  • [16] Simple discrete-time malarial models
    Li, Jia
    [J]. JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2013, 19 (04) : 649 - 666
  • [17] Li YB, 2018, J ANAL METHODS CHEM, V2018, P1, DOI [DOI 10.1155/2018/6532789, DOI 10.13031/aim.201800102]
  • [18] Stable Introduction of a Life-Shortening Wolbachia Infection into the Mosquito Aedes aegypti
    McMeniman, Conor J.
    Lane, Roxanna V.
    Cass, Bodil N.
    Fong, Amy W. C.
    Sidhu, Manpreet
    Wang, Yu-Feng
    O'Neill, Scott L.
    [J]. SCIENCE, 2009, 323 (5910) : 141 - 144
  • [19] Infection by Wolbachia: from passengers to residents
    Mercot, Herve
    Poinsot, Denis
    [J]. COMPTES RENDUS BIOLOGIES, 2009, 332 (2-3) : 284 - 297
  • [20] Assessing key safety concerns of a Wolbachia-based strategy to control dengue transmission by Aedes mosquitoes
    Popovici, Jean
    Moreira, Luciano A.
    Poinsignon, Anne
    Iturbe-Ormaetxe, Inaki
    McNaughton, Darlene
    O'Neill, Scott L.
    [J]. MEMORIAS DO INSTITUTO OSWALDO CRUZ, 2010, 105 (08): : 957 - 964