A note on the Airy beams in the light of the symmetry algebra based approach

被引:21
作者
Torre, A. [1 ]
机构
[1] FISMAT Tecnol Fisiche & Nuovi Mat, ENEA, FIM, I-00044 Frascati, Rome, Italy
来源
JOURNAL OF OPTICS A-PURE AND APPLIED OPTICS | 2009年 / 11卷 / 12期
关键词
paraxial wave equation; Airy beams; Airy transform; LIE THEORY; SEPARATION; VARIABLES; EQUATION;
D O I
10.1088/1464-4258/11/12/125701
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The Airy function based solutions of the paraxial wave equation in planar geometry are framed within the unifying context of a well-known Lie algebra formalism, which is shown to account for both infinite and finite energy solutions. In fact, the finite energy solutions can be obtained by complexification of the relevant propagation parameter. Also, they are alternatively deduced by taking advantage of the added degree of freedom they display, inherent in the symmetry algebra based approach, i.e. the eigenvalue of the operator (in the symmetry algebra), from which the solutions can be understood to originate.
引用
收藏
页数:11
相关论文
共 42 条
[11]   A note on an accelerating finite energy Airy beam [J].
Besieris, Ioannis M. ;
Shaarawi, Amr M. .
OPTICS LETTERS, 2007, 32 (16) :2447-2449
[12]  
Bluman G.W., 2013, Symmetries and Differential Equations, V81
[13]   LIE THEORY AND SEPARATION OF VARIABLES .6. EQUATION IUT + DELTA2 U =O [J].
BOYER, CP ;
KALNINS, EG ;
MILLER, W .
JOURNAL OF MATHEMATICAL PHYSICS, 1975, 16 (03) :499-511
[14]   AN ALGEBRAIC VIEW TO THE OPERATORIAL ORDERING AND ITS APPLICATIONS TO OPTICS [J].
DATTOLI, G ;
GALLARDO, JC ;
TORRE, A .
RIVISTA DEL NUOVO CIMENTO, 1988, 11 (11) :1-79
[15]   Observation of accelerating parabolic beams [J].
Davis, Jeffrey A. ;
Mitry, Mark J. ;
Bandres, Miguel A. ;
Cottrell, Don M. .
OPTICS EXPRESS, 2008, 16 (17) :12866-12871
[16]   WAVE SOLUTIONS UNDER COMPLEX SPACE-TIME SHIFTS [J].
EINZIGER, PD ;
RAZ, S .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 1987, 4 (01) :3-10
[17]  
FELSEN LB, 1976, I NAZIONALE ALTA MAT, V18, P39
[18]   NONSPREADING WAVE-PACKETS - COMMENT [J].
GREENBERGER, DM .
AMERICAN JOURNAL OF PHYSICS, 1980, 48 (03) :256-256
[19]   LIE THEORY AND SEPARATION OF VARIABLES .5. EQUATIONS IUT+U++=O AND IUT+U++-C-X2 U=O [J].
KALNINS, EG ;
MILLER, W .
JOURNAL OF MATHEMATICAL PHYSICS, 1974, 15 (10) :1728-1737
[20]  
Lie S., 1891, Vorlesungen uber differentialgleichungen mit bekannten infinitesimalen transformationen