STOCHASTIC NONLINEAR DIFFUSION EQUATIONS WITH SINGULAR DIFFUSIVITY

被引:21
作者
Barbu, Viorel [1 ,2 ]
Da Prato, Giuseppe [3 ]
Roeckner, Michael [4 ]
机构
[1] Alexandru Ioan Cuza Univ, Iasi 700506, Romania
[2] Inst Math Octav Mayer, Iasi 700506, Romania
[3] Scuola Normale Super Pisa, I-56126 Pisa, Italy
[4] Univ Bielefeld, Fak Math, D-33501 Bielefeld, Germany
关键词
stochastic diffusion equation; bounded variation; Wiener process;
D O I
10.1137/080718966
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we are concerned with the stochastic diffusion equation dX(t) = div[sgn(del(X(t)))]dt + root Q dW(t) in (0, infinity) x O, where O is a bounded open subset of R-d, d = 1, 2, W(t) is a cylindrical Wiener process on L-2(O), and sgn(del X) = del X/vertical bar X vertical bar(d) if del X not equal 0 and sgn (0) = {v is an element of R-d : vertical bar v vertical bar(d) <= 1}. The multivalued and highly singular diffusivity term sgn(del X) describes interaction phenomena, and the solution X = X(t) might be viewed as the stochastic flow generated by the gradient of the total variation parallel to DX parallel to. Our main result says that this problem is well posed in the space of processes with bounded variation in the spatial variable.. The above equation is relevant for modeling crystal growth as well as for total variation based techniques in image restoration.
引用
收藏
页码:1106 / 1120
页数:15
相关论文
共 19 条
[1]  
[Anonymous], 2000, Oxford Mathematical Monographs
[2]   Ergodicity for nonlinear stochastic equations in variational formulation [J].
Barbu, V ;
Prato, G .
APPLIED MATHEMATICS AND OPTIMIZATION, 2006, 53 (02) :121-139
[3]  
BARBU V, 1993, ANAL CONTROL INFINIT
[4]  
Barbu V, 2008, INDIANA U MATH J, V57, P187
[5]   Stochastic Porous Media Equations and Self-Organized Criticality [J].
Barbu, Viorel ;
Da Prato, Giuseppe ;
Roeckner, Michael .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2009, 285 (03) :901-923
[6]  
Brezis H., 1973, OPERATEURS MAXIMAUX
[7]   Image recovery via total variation minimization and related problems [J].
Chambolle, A ;
Lions, PL .
NUMERISCHE MATHEMATIK, 1997, 76 (02) :167-188
[8]  
Chan T, 2006, HANDBOOK OF MATHEMATICAL MODELS IN COMPUTER VISION, P17, DOI 10.1007/0-387-28831-7_2
[9]  
Da Prato G., 2014, Stochastic Equations in Infinite Dimensions, DOI 10.1017/CBO9780511666223
[10]  
Da Prato G., 2004, Kolmogorov Equations for Stochastic PDEs (Advanced Courses in Mathematics. CRM Barcelona)