Spectroscopic models for real-time monitoring of cell culture processes using spatiotemporal just-in-time Gaussian processes

被引:23
作者
Tulsyan, Aditya [1 ]
Khodabandehlou, Hamid [2 ]
Wang, Tony [2 ]
Schorner, Gregg [3 ]
Coufal, Myra [1 ]
Undey, Cenk [2 ]
机构
[1] Amgen Inc, Digital Integrat & Predict Technol, 360 Binney St, Cambridge, MA 02141 USA
[2] Amgen Inc, Digital Integrat & Predict Technol, Thousand Oaks, CA USA
[3] Amgen Inc, Digital Integrat & Predict Technol, West Greenwich, RI USA
关键词
biopharmaceutical manufacturing; machine‐ learning; Raman spectroscopy; real‐ time monitoring;
D O I
10.1002/aic.17210
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Spectroscopic methods play an instrumental role in the implementation of the U.S. Food and Drug Administration outlined process analytical technology for biopharmaceutical manufacturing. Industrial spectroscopic calibration models are typically developed in an offline setting using traditional methods, such as partial least squares and principal component regression. Apart from the limiting performances of these conventional models under time-varying operating conditions, these methods require access to extensive historical data, which are seldom available in biopharmaceutical manufacturing. In this article, we propose a novel spatiotemporal just-in-time learning (ST-JITL) based spectroscopic model calibration platform for automatic training and maintenance of calibration models using routine batch data. The proposed ST-JITL framework uses Gaussian processes (GPs) for local model calibration. A GP model not only exhibits superior performance over traditional methods but also provides credibility intervals around the model predictions. The efficacy of the ST-JITL based model calibration platform is demonstrated in predicting the critical performance parameters of an industrial cell culture process.
引用
收藏
页数:17
相关论文
共 50 条
[21]   Non-invasive real-time monitoring of cell concentration and viability using Doppler ultrasound [J].
Akbari, Samin ;
Anderson, Phillip ;
Zang, Han ;
Ganjian, Amin ;
Balke, Robert ;
Kwon, Taehong ;
Pollard, David .
SLAS TECHNOLOGY, 2022, 27 (06) :368-375
[22]   Real-time amino acid and glucose monitoring system for the automatic control of nutrient feeding in CHO cell culture using Raman spectroscopy [J].
Domjan, Julia ;
Pantea, Eszter ;
Gyurkes, Martin ;
Madarasz, Lajos ;
Kozak, Dora ;
Farkas, Attila ;
Horvath, Balazs ;
Nagy, Zsombor Kristof ;
Marosi, Gyorgy ;
Hirsch, Edit .
BIOTECHNOLOGY JOURNAL, 2022, 17 (05)
[23]   Real-time monitoring of tritium gas reactions using Raman spectroscopy [J].
Heys, JR ;
Powell, ME ;
Pivonka, DE .
JOURNAL OF LABELLED COMPOUNDS & RADIOPHARMACEUTICALS, 2004, 47 (13) :983-995
[24]   Enhancing real-time cell culture process monitoring through the integration of advanced machine learning techniques: A comparative analysis of Raman and capacitance spectroscopies [J].
Xu, Feng ;
Pinto, Nuno ;
Zhou, George ;
Ahuja, Sanjeev .
BIOTECHNOLOGY PROGRESS, 2025, 41 (03)
[25]   Application of process analytical technology for real-time monitoring of synthetic co-culture bioprocesses [J].
Dambruin, Nicole A. ;
Pronk, Jack T. ;
Klijn, Marieke E. .
ANALYTICAL AND BIOANALYTICAL CHEMISTRY, 2025,
[26]   Hybrid-EKF: Hybrid model coupled with extended Kalman filter for real-time monitoring and control of mammalian cell culture [J].
Narayanan, Harini ;
Behle, Lars ;
Luna, Martin F. ;
Sokolov, Michael ;
Guillen-Gosalbez, Gonzalo ;
Morbidelli, Massimo ;
Butte, Alessandro .
BIOTECHNOLOGY AND BIOENGINEERING, 2020, 117 (09) :2703-2714
[27]   Real Time Monitoring of Multiple Parameters in Mammalian Cell Culture Bioreactors Using an In-Line Raman Spectroscopy Probe [J].
Abu-Absi, Nicholas R. ;
Kenty, Brian M. ;
Cuellar, Maryann Ehly ;
Borys, Michael C. ;
Sakhamuri, Sivakesava ;
Strachan, David J. ;
Hausladen, Michael C. ;
Li, Zheng Jian .
BIOTECHNOLOGY AND BIOENGINEERING, 2011, 108 (05) :1215-1221
[28]   Real-time monitoring of blood using coherent anti-Stokes Raman spectroscopy [J].
Dogariu, Arthur ;
Goltsov, Alexander ;
Scully, Marlan O. .
JOURNAL OF BIOMEDICAL OPTICS, 2008, 13 (05)
[29]   ACRYLAMIDE INVERSE MINIEMULSION POLYMERIZATION: IN SITU, REAL-TIME MONITORING USING NIR SPECTROSCOPY [J].
Colman, M. M. E. ;
Chicoma, D. L. ;
Giudici, R. ;
Araujo, P. H. H. ;
Sayer, C. .
BRAZILIAN JOURNAL OF CHEMICAL ENGINEERING, 2014, 31 (04) :925-933
[30]   Real-time Quantitative Monitoring of Synthesis Process of Clevidipine Butyrate Using Raman Spectroscopy [J].
Liu Yan-Hua ;
Zhang Jun-Dong ;
Yan Kun ;
Wei Yu-Jiao ;
Zhang Qian-Qian ;
Lu Feng ;
Yan Zheng-Yu .
CHINESE JOURNAL OF ANALYTICAL CHEMISTRY, 2017, 45 (02) :E1701-E1708