Interplay of Bias-Driven Charging and the Vibrational Stark Effect in Molecular Junctions

被引:44
作者
Li, Yajing [1 ]
Zolotavin, Pavlo [1 ]
Doak, Peter [2 ]
Kronik, Leeor [3 ]
Neaton, Jeffrey B. [4 ,5 ,6 ]
Natelson, Douglas [1 ,7 ,8 ]
机构
[1] Rice Univ, Dept Phys & Astron, MS 61,6100 Main St, Houston, TX 77005 USA
[2] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA
[3] Weizmann Inst Sci, Dept Mat & Interfaces, IL-76100 Rehovot, Israel
[4] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA
[5] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA
[6] Kavli Energy Nanosci Inst Berkeley, Berkeley, CA 94720 USA
[7] Rice Univ, Dept Elect & Comp Engn, MS 366, Houston, TX 77005 USA
[8] Rice Univ, Dept Mat Sci & Nanoengn, MS 325, Houston, TX 77005 USA
基金
以色列科学基金会;
关键词
Molecular junction; surface-enhanced Raman spectroscopy; charge transfer; vibrational Stark effect; ENHANCED RAMAN-SPECTROSCOPY; SINGLE-MOLECULE; ELECTRIC-FIELDS; SCATTERING; SERS; NANOPARTICLES; TRANSITION; TRANSPORT; PROTEINS; NANOGAP;
D O I
10.1021/acs.nanolett.5b04340
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We observe large, reversible, bias driven changes in the vibrational energies of PCBM based on simultaneous transport and surface-enhanced Raman spectroscopy (SERS) measurements on PCBM-gold junctions. A combination of linear and quadratic shifts in vibrational energies with voltage is analyzed and compared with similar measurements involving C-60-gold junctions. A theoretical model based on density functional theory (DFT) calculations suggests that both a vibrational Stark effect and bias-induced charging of the junction contribute to the shifts in vibrational energies. In the PCBM case, a linear vibrational Stark effect is observed due to the permanent electric dipole moment of PCBM. The vibrational Stark shifts shown here for PCBM junctions are comparable to or larger than the charging effects that dominate in C-60 junctions.
引用
收藏
页码:1104 / 1109
页数:6
相关论文
共 36 条
[1]   Single-molecule junctions beyond electronic transport [J].
Aradhya, Sriharsha V. ;
Venkataraman, Latha .
NATURE NANOTECHNOLOGY, 2013, 8 (06) :399-410
[2]   Surface-Enhanced Raman Trajectories on a Nano-Dumbbell: Transition from Field to Charge Transfer Plasmons as the Spheres Fuse [J].
Banik, Mayukh ;
El-Khoury, Patrick Z. ;
Nag, Amit ;
Rodriguez-Perez, Alejandro ;
Guarrottxena, Nekane ;
Bazan, Guillermo C. ;
Apkarian, Vartkess A. .
ACS NANO, 2012, 6 (11) :10343-10354
[3]   Microscopic inhomogeneity and ultrafast orientational motion in an organic photovoltaic bulk heterojunction thin film studied with 2D IR vibrational spectroscopy [J].
Barbour, Larry W. ;
Hegadorn, Maureen ;
Asbury, John B. .
JOURNAL OF PHYSICAL CHEMISTRY B, 2006, 110 (48) :24281-24286
[4]   Theoretical study of the charge transport through C60-based single-molecule junctions [J].
Bilan, S. ;
Zotti, L. A. ;
Pauly, F. ;
Cuevas, J. C. .
PHYSICAL REVIEW B, 2012, 85 (20)
[5]   THE VIBRATIONAL STARK-EFFECT [J].
BISHOP, DM .
JOURNAL OF CHEMICAL PHYSICS, 1993, 98 (04) :3179-3184
[6]   Stark spectroscopy: Applications in chemistry, biology, and materials science [J].
Bublitz, GU ;
Boxer, SG .
ANNUAL REVIEW OF PHYSICAL CHEMISTRY, 1997, 48 :213-242
[7]   VIBRATIONAL STARK-EFFECT SPECTROSCOPY [J].
CHATTOPADHYAY, A ;
BOXER, SG .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1995, 117 (04) :1449-1450
[8]   Re-examining the origins of spectral blinking in single-molecule and single-nanoparticle SERS [J].
Emory, SR ;
Jensen, RA ;
Wenda, T ;
Han, MY ;
Nie, SM .
FARADAY DISCUSSIONS, 2006, 132 :249-259
[9]   Direct Measurement of the Membrane Dipole Field in Bicelles Using Vibrational Stark Effect Spectroscopy [J].
Hu, Wenhui ;
Webb, Lauren J. .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2011, 2 (15) :1925-1930
[10]   PHOTOCHEMICAL FULLEROID TO METHANOFULLERENE CONVERSION VIA THE DI-PI-METHANE (ZIMMERMAN) REARRANGEMENT [J].
JANSSEN, RAJ ;
HUMMELEN, JC ;
WUDL, F .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1995, 117 (01) :544-545