Nuclear Ca++-influx, Ca++/calmodulin-dependent protein kinase IV activity and CREB protein phosphorylation during post-hypoxic reoxygenation in neuronal nuclei of newborn piglets:: The role of nitric oxide

被引:9
|
作者
Mishra, Om Prakash
Zubrow, Alan B.
Ashraf, Qazi M.
Delivoria-Papadopoulos, Maria
机构
[1] Drexel Univ, Coll Med, Dept Pediat, Philadelphia, PA 19102 USA
[2] St Christophers Hosp Children, Philadelphia, PA 19102 USA
关键词
nitric oxide; nuclear Ca++-influx; CaM kinase IV; CREB protein; nNOS; hypoxia; brain;
D O I
10.1007/s11064-006-9204-x
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The present study tests the hypothesis that post-hypoxic reoxygenation results in an nitric oxide (NO)-mediated increase in nuclear Ca++-influx, increased calmodulin kinase (CaM kinase) IV activity, and increased Ser(133) phosphorylation of cyclic AMP response element binding (CREB) protein in neuronal nuclei of the cerebral cortex of newborn piglets. Piglets were divided into normoxic (Nx), hypoxic (Hx, FiO(2) = 0.07 for 1 h), hypoxic with 6 h reoxygenation (Hx + reox), and Hx + reox injected with 7-nitroindazole sodium salt (7-NINA), a nNOS inhibitor, immediately after hypoxia (Hx + 7-NINA). Cerebral tissue hypoxia was documented by ATP and phosphocreatine (PCr) levels. Nuclear Ca++-influx was determined using 45 Ca++ and CaM kinase IV activity determined by P-33-incorporation into syntide-2. Ser(133) phosphorylation of CREB protein was determined by Western blot analysis using a specific anti-phosphorylated Ser(133)-CREB protein antibody. ATP and PCr values in Hx, Hx + reox, and Hx + 7-NINA were significantly different from Nx (P < 0.05 versus Nx). Ca++-influx (pmoles/mg protein/min) was 3.79 +/- 0.91 in Nx; 11.81 +/- 2.54 in Hx (P < 0.05 versus Nx), 16.55 +/- 3.55 in Hx + reox (P < 0.05 versus Nx), and 12.40 +/- 2.93 in Hx + 7-NINA (P = NS versus Hx). CaM kinase IV activity (pmoles/mg protein/min) was 1,220 +/- 76 in Nx, 2,403 +/- 254 in Hx (P < 0.05 versus Nx), 1,971 +/- 147 in Hx + reox (P < 0.05 versus Hx), and 1,939 +/- 125 Hx + 7-NINA (P < 0.05 versus Hx). Ser 133 phosphorylated CREB protein expression (OD x mm(2)) was 87 +/- 2 in Nx, 203 +/- 24 in Hx (P < 0.05 versus Nx), 186 +/- 23 in Hx + reox ( P < 0.05 Nx, P = NS versus Hx), and 128 +/- 10 in Hx + 7-NINA (P < 0.05 versus Hx and Hx + reox). The results show that post-Hx administration of 7-NINA prevents the increased nuclear Ca++-influx and CREB protein phosphorylation at Ser(133) during reox. We conclude that post-Hx increase in nuclear Ca++-influx leading to increased phosphorylation of CREB protein is mediated by NO derived from nNOS. However, hypoxia-induced increase in CaM Kinase IV activity decreased during the post-Hx reox. We propose that hypoxia-induced increase in CaM Kinase IV activity leads to increased phosphorylation of CREB protein and transcription of proapoptotic genes during post-Hx reox resulting in Hx neuronal death.
引用
收藏
页码:1463 / 1471
页数:9
相关论文
共 43 条