Drug Repositioning for Cancer Therapy Based on Large-Scale Drug-Induced Transcriptional Signatures

被引:58
作者
Lee, Haeseung [1 ]
Kang, Seungmin [1 ]
Kim, Wankyu [1 ]
机构
[1] Ewha Womans Univ, Ewha Res Ctr Syst Biol, Div Mol & Life Sci, Seoul, South Korea
基金
新加坡国家研究基金会;
关键词
SMALL MOLECULES; CELL-GROWTH; DATABASE; IDENTIFICATION; MAPROTILINE; INHIBITION; AMLODIPINE; ANTIDEPRESSANTS; PROLIFERATION; INTEGRATION;
D O I
10.1371/journal.pone.0150460
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
An in silico chemical genomics approach is developed to predict drug repositioning (DR) candidates for three types of cancer: glioblastoma, lung cancer, and breast cancer. It is based on a recent large-scale dataset of similar to 20,000 drug-induced expression profiles in multiple cancer cell lines, which provides i) a global impact of transcriptional perturbation of both known targets and unknown off-targets, and ii) rich information on drug's mode-of-action. First, the drug-induced expression profile is shown more effective than other information, such as the drug structure or known target, using multiple HTS datasets as unbiased benchmarks. Particularly, the utility of our method was robustly demonstrated in identifying novel DR candidates. Second, we predicted 14 high-scoring DR candidates solely based on expression signatures. Eight of the fourteen drugs showed significant anti-proliferative activity against glioblastoma; i.e., ivermectin, trifluridine, astemizole, amlodipine, maprotiline, apomorphine, mometasone, and nortriptyline. Our DR score strongly correlated with that of cell-based experimental results; the top seven DR candidates were positive, corresponding to an approximately 20-fold enrichment compared with conventional HTS. Despite diverse original indications and known targets, the perturbed pathways of active DR candidates show five distinct patterns that form tight clusters together with one or more known cancer drugs, suggesting common transcriptome-level mechanisms of anti-proliferative activity.
引用
收藏
页数:17
相关论文
共 69 条
[1]   The Calcium Signaling Pathway Regulates Leydig Cell Steroidogenesis through a Transcriptional Cascade Involving the Nuclear Receptor NR4A1 and the Steroidogenic Acute Regulatory Protein [J].
Abdou, Houssein S. ;
Villeneuve, Gabrielle ;
Tremblay, Jacques J. .
ENDOCRINOLOGY, 2013, 154 (01) :511-520
[2]   Drug repositioning: Identifying and developing new uses for existing drugs [J].
Ashburn, TT ;
Thor, KB .
NATURE REVIEWS DRUG DISCOVERY, 2004, 3 (08) :673-683
[3]   NCBI GEO: archive for functional genomics data sets-update [J].
Barrett, Tanya ;
Wilhite, Stephen E. ;
Ledoux, Pierre ;
Evangelista, Carlos ;
Kim, Irene F. ;
Tomashevsky, Maxim ;
Marshall, Kimberly A. ;
Phillippy, Katherine H. ;
Sherman, Patti M. ;
Holko, Michelle ;
Yefanov, Andrey ;
Lee, Hyeseung ;
Zhang, Naigong ;
Robertson, Cynthia L. ;
Serova, Nadezhda ;
Davis, Sean ;
Soboleva, Alexandra .
NUCLEIC ACIDS RESEARCH, 2013, 41 (D1) :D991-D995
[4]   The ChEMBL bioactivity database: an update [J].
Bento, A. Patricia ;
Gaulton, Anna ;
Hersey, Anne ;
Bellis, Louisa J. ;
Chambers, Jon ;
Davies, Mark ;
Krueger, Felix A. ;
Light, Yvonne ;
Mak, Lora ;
McGlinchey, Shaun ;
Nowotka, Michal ;
Papadatos, George ;
Santos, Rita ;
Overington, John P. .
NUCLEIC ACIDS RESEARCH, 2014, 42 (D1) :D1083-D1090
[5]   Mitochondrial dysfunction in cancer [J].
Boland, Michelle L. ;
Chourasia, Aparajita H. ;
Macleod, Kay F. .
FRONTIERS IN ONCOLOGY, 2013, 3
[6]   The Somatic Genomic Landscape of Glioblastoma [J].
Brennan, Cameron W. ;
Verhaak, Roel G. W. ;
McKenna, Aaron ;
Campos, Benito ;
Noushmehr, Houtan ;
Salama, Sofie R. ;
Zheng, Siyuan ;
Chakravarty, Debyani ;
Sanborn, J. Zachary ;
Berman, Samuel H. ;
Beroukhim, Rameen ;
Bernard, Brady ;
Wu, Chang-Jiun ;
Genovese, Giannicola ;
Shmulevich, Ilya ;
Barnholtz-Sloan, Jill ;
Zou, Lihua ;
Vegesna, Rahulsimham ;
Shukla, Sachet A. ;
Ciriello, Giovanni ;
Yung, W. K. ;
Zhang, Wei ;
Sougnez, Carrie ;
Mikkelsen, Tom ;
Aldape, Kenneth ;
Bigner, Darell D. ;
Van Meir, Erwin G. ;
Prados, Michael ;
Sloan, Andrew ;
Black, Keith L. ;
Eschbacher, Jennifer ;
Finocchiaro, Gaetano ;
Friedman, William ;
Andrews, David W. ;
Guha, Abhijit ;
Iacocca, Mary ;
O'Neill, Brian P. ;
Foltz, Greg ;
Myers, Jerome ;
Weisenberger, Daniel J. ;
Penny, Robert ;
Kucherlapati, Raju ;
Perou, Charles M. ;
Hayes, D. Neil ;
Gibbs, Richard ;
Marra, Marco ;
Mills, Gordon B. ;
Lander, Eric ;
Spellman, Paul ;
Wilson, Richard .
CELL, 2013, 155 (02) :462-477
[7]   Drug target identification using side-effect similarity [J].
Campillos, Monica ;
Kuhn, Michael ;
Gavin, Anne-Claude ;
Jensen, Lars Juhl ;
Bork, Peer .
SCIENCE, 2008, 321 (5886) :263-266
[8]   PubChem as a Source of Polypharmacology [J].
Chen, Bin ;
Wild, David ;
Guha, Rajarshi .
JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2009, 49 (09) :2044-2055
[9]   Prediction of Drug-Target Interactions and Drug Repositioning via Network-Based Inference [J].
Cheng, Feixiong ;
Liu, Chuang ;
Jiang, Jing ;
Lu, Weiqiang ;
Li, Weihua ;
Liu, Guixia ;
Zhou, Weixing ;
Huang, Jin ;
Tang, Yun .
PLOS COMPUTATIONAL BIOLOGY, 2012, 8 (05)
[10]   Dual kinase-bromodomain inhibitors for rationally designed polypharmacology [J].
Ciceri, Pietro ;
Mueller, Susanne ;
O'Mahony, Alison ;
Fedorov, Oleg ;
Filippakopoulos, Panagis ;
Hunt, Jeremy P. ;
Lasater, Elisabeth A. ;
Pallares, Gabriel ;
Picaud, Sarah ;
Wells, Christopher ;
Martin, Sarah ;
Wodicka, Lisa M. ;
Shah, Neil P. ;
Treiber, Daniel K. ;
Knapp, Stefan .
NATURE CHEMICAL BIOLOGY, 2014, 10 (04) :305-+