Nonparametric predictive inference for European option pricing based on the binomial tree model

被引:11
作者
He, Ting [1 ]
Coolen, Frank P. A. [1 ]
Coolen-Maturi, Tahani [1 ]
机构
[1] Univ Durham, Dept Math Sci, Durham DH1 3LE, England
关键词
CRR Binomial Tree Model; European option; imprecise probability; nonparametric predictive inference; option pricing; AGE REPLACEMENT; IMPRECISE RISK;
D O I
10.1080/01605682.2018.1495997
中图分类号
C93 [管理学];
学科分类号
12 ; 1201 ; 1202 ; 120202 ;
摘要
In finance, option pricing is one of the main topics. A basic model for option pricing is the Binomial Tree Model, proposed by Cox, Ross, and Rubinstein in 1979 (CRR). This model assumes that the underlying asset price follows a binomial distribution with a constant upward probability, the so-called risk-neutral probability. In this article, we propose a novel method based on the binomial tree. Rather than using the risk-neutral probability, we apply Nonparametric Predictive Inference (NPI) to infer imprecise probabilities of movements, reflecting more uncertainty while learning from data. To study its performance, we price the same European options utilising both the NPI method and the CRR model and compare the results in two different scenarios, firstly where the CRR assumptions are right, and secondly where the CRR model assumptions deviate from the real market. It turns out that our NPI method, as expected, cannot perform better than the CRR in the first scenario, but can do better in the second scenario.
引用
收藏
页码:1692 / 1708
页数:17
相关论文
共 19 条
[1]  
Arnold T., 2000, OPTION PRICING REAL, DOI [10.2139/ssrn, DOI 10.2139/SSRN]
[2]   Nonparametric predictive inference and interval probability [J].
Augustin, T ;
Coolen, FPA .
JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2004, 124 (02) :251-272
[3]   Nonparametric predictive inference for stock returns [J].
Baker, Rebecca M. ;
Coolen-Maturi, Tahani ;
Coolen, Frank P. A. .
JOURNAL OF APPLIED STATISTICS, 2017, 44 (08) :1333-1349
[4]   Portfolio management under epistemic uncertainty using stochastic dominance and information-gap theory [J].
Berleant, D. ;
Andrieu, L. ;
Argaud, J. -P. ;
Barjon, F. ;
Cheong, M. -P. ;
Dancre, M. ;
Sheble, G. ;
Teoh, C. -C. .
INTERNATIONAL JOURNAL OF APPROXIMATE REASONING, 2008, 49 (01) :101-116
[5]  
Chen J., 2018, J OPERATIONAL RES SO
[6]   Nonparametric Predictive Inference for Ordinal Data [J].
Coolen, F. P. A. ;
Coolen-Schrijner, P. ;
Coolen-Maturi, T. ;
Elkhafifi, F. F. .
COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2013, 42 (19) :3478-3496
[7]  
Coolen F. P. A, 2011, INT ENCY STAT SCI, DOI [10.1007/978-3-642-04898-2, DOI 10.1007/978-3-642-04898-2]
[8]   Low structure imprecise predictive inference for Bayes' problem [J].
Coolen, FPA .
STATISTICS & PROBABILITY LETTERS, 1998, 36 (04) :349-357
[9]   Nonparametric predictive inference for system reliability using the survival signature [J].
Coolen, Frank P. A. ;
Coolen-Maturi, Tahani ;
Al-Nefaiee, Abdullah H. .
PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART O-JOURNAL OF RISK AND RELIABILITY, 2014, 228 (05) :437-448
[10]   Nonparametric adaptive age replacement with a one-cycle criterion [J].
Coolen-Schrijner, P. ;
Coolen, F. P. A. .
RELIABILITY ENGINEERING & SYSTEM SAFETY, 2007, 92 (01) :74-84