Perfect Electric Conductor Implementation in 3D Lebedev FDTD

被引:0
|
作者
Bordbar, Farzad [1 ]
Potter, M. E. [1 ]
Okoniewski, Michal [1 ]
机构
[1] Univ Calgary, Dept Elect & Comp Engn, Calgary, AB, Canada
来源
2019 13TH EUROPEAN CONFERENCE ON ANTENNAS AND PROPAGATION (EUCAP) | 2019年
关键词
FDTD; anisotropy; CP-FDTD method;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In modeling of anisotropic materials, the Lebedev grid is an alternative method to regular Yee grid with collocated field components. This complicates handling Perfect Electric Conductor (PEC) interfaces because normal field components need to be accounted for. In this paper, the implementation of 3D PEC boundaries such as outside edges is presented. The accuracy of the method is verified by simulating a ridged resonator filled with an anisotropic material.
引用
收藏
页数:3
相关论文
共 50 条
  • [1] On Accuracy of Perfect Electric Conductor Implementation in Lebedev FDTD
    Salmasi, Mahbod
    Potter, M. E.
    Okoniewski, Michal
    IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, 2018, 17 (03): : 442 - 445
  • [2] Handling of the perfect electric conductor in higher-order FDTD method
    Wu, WY
    Kuo, CW
    APMC 2001: ASIA-PACIFIC MICROWAVE CONFERENCE, VOLS 1-3, PROCEEDINGS, 2001, : 203 - 207
  • [3] Numerical investigation of the effective dimensions of perfect electric conductor (PEC) in FDTD simulation
    Zhou, BX
    Wang, SC
    Yu, WH
    MICROWAVE AND OPTICAL TECHNOLOGY LETTERS, 2004, 40 (02) : 107 - 109
  • [4] Development of a CUDA Implementation of the 3D FDTD Method
    Livesey, Matthew
    Stack, James Francis, Jr.
    Costen, Fumie
    Nanri, Takeshi
    Nakashima, Norimasa
    Fujino, Seiji
    IEEE ANTENNAS AND PROPAGATION MAGAZINE, 2012, 54 (05) : 186 - 195
  • [5] Implementation of General Dispersive Anisotropic Materials in Lebedev FDTD
    Salmasi, Mahbod
    Potter, Mike E.
    Okoniewski, Michal
    IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2018, 66 (12) : 7171 - 7179
  • [6] Use of the perfect electric conductor boundary conditions to discretize a diffractor in FDTD/PML environment
    Calderon-Ramon, C.
    Gomez-Aguilar, J. F.
    Rodriguez-Achach, M.
    Morales-Mendoza, L. J.
    Laguna-Camacho, J. R.
    Benavides-Cruz, M.
    Cruz-Orduna, M. I.
    Gonzalez-Lee, M.
    Perez-Meana, H.
    Enciso-Aguilar, M.
    Chavez-Perez, R.
    Martinez-Garcia, H.
    REVISTA MEXICANA DE FISICA, 2015, 61 (05) : 344 - 350
  • [7] 3D FDTD Implementation for Scattering of Electric Anisotropic Dispersive Medium Using Recursive Convolution Method
    Lixia Yang
    International Journal of Infrared and Millimeter Waves, 2007, 28 : 557 - 565
  • [8] FDTD implementation of surface impedance boundary condition for dispersive layer backed by perfect conductor
    Nishioka, Y
    Maeshima, O
    Uno, T
    Adachi, S
    IEICE TRANSACTIONS ON ELECTRONICS, 1998, E81C (12): : 1902 - 1904
  • [9] 3D FDTD implementation for scattering of electric anisotropic dispersive medium using recursive convolution method
    Yang, Lixia
    INTERNATIONAL JOURNAL OF INFRARED AND MILLIMETER WAVES, 2007, 28 (07): : 557 - 565
  • [10] PARALLEL IMPLEMENTATION OF A 3D SUBGRIDDING FDTD ALGORITHM FOR LARGE SIMULATIONS
    Vaccari, A.
    Lesina, A. Cala'
    Cristoforetti, L.
    Pontalti, R.
    PROGRESS IN ELECTROMAGNETICS RESEARCH-PIER, 2011, 120 : 263 - 292