Transient bi-fractional diffusion: space-time coupling inducing the coexistence of two fractional diffusions

被引:6
|
作者
Liu, Jian [1 ,2 ]
Zhu, Yaohui [1 ]
He, Peisong [1 ]
Chen, Xiaosong [2 ]
Bao, Jing-Dong [3 ]
机构
[1] Beijing Technol & Business Univ, Sch Sci, Beijing 100048, Peoples R China
[2] Chinese Acad Sci, Inst Theoret Phys, CAS Key Lab Theoret Phys, Beijing 100190, Peoples R China
[3] Beijing Normal Univ, Dept Phys, Beijing 100875, Peoples R China
来源
EUROPEAN PHYSICAL JOURNAL B | 2017年 / 90卷 / 04期
基金
中国国家自然科学基金;
关键词
ANOMALOUS DIFFUSION; RANDOM-WALKS; LEVY WALKS; DISORDERED MEDIA; TRANSPORT; DYNAMICS; DISPERSION; TURBULENCE; MODELS; CELLS;
D O I
10.1140/epjb/e2017-80060-5
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
Anomalous diffusion is researched within the framework of the coupled continuous time random walk model, in which the space-time coupling is considered through the correlated function g(t) similar to t(gamma), 0 <= gamma < 2, and the probability density function.(t) of a particle's transition time t follows a power law for large t: omega(t) similar to t(-(1+alpha)), 1 < alpha < 2. The bi-fractional generalized master equation is derived analytically which can be applied to describe the transient bi-fractional diffusion phenomenon which is induced by the space-time coupling and the asymptotic behavior of omega(t). Numerical results show that for the transient bi-fractional diffusion, there is a transition from one fractional diffusion to another one in the diffusive process.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Transient bi-fractional diffusion: space-time coupling inducing the coexistence of two fractional diffusions
    Jian Liu
    Yaohui Zhu
    Peisong He
    Xiaosong Chen
    Jing-Dong Bao
    The European Physical Journal B, 2017, 90
  • [2] Transient flow in a linear reservoir for space-time fractional diffusion
    Chen, C.
    Raghavan, R.
    JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING, 2015, 128 : 194 - 202
  • [3] Space-time fractional diffusion: transient flow to a line source
    Raghavan, Rajagopal
    Chen, Chih
    OIL & GAS SCIENCE AND TECHNOLOGY-REVUE D IFP ENERGIES NOUVELLES, 2021, 76
  • [4] Inverse source problems for multi-parameter space-time fractional differential equations with bi-fractional Laplacian operators
    Huntul, M. J.
    AIMS MATHEMATICS, 2024, 9 (11): : 32734 - 32756
  • [5] Space-time fractional diffusions in Gaussian noisy environment
    Chen, Le
    Hu, Guannan
    Hu, Yaozhong
    Huang, Jingyu
    STOCHASTICS-AN INTERNATIONAL JOURNAL OF PROBABILITY AND STOCHASTIC REPORTS, 2017, 89 (01): : 171 - 206
  • [6] SPACE-TIME DUALITY FOR FRACTIONAL DIFFUSION
    Baeumer, Boris
    Meerschaert, Mark M.
    Nane, Erkan
    JOURNAL OF APPLIED PROBABILITY, 2009, 46 (04) : 1100 - 1115
  • [7] Generalized space-time fractional diffusion equation with composite fractional time derivative
    Tomovski, Zivorad
    Sandev, Trifce
    Metzler, Ralf
    Dubbeldam, Johan
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2012, 391 (08) : 2527 - 2542
  • [8] Subordination Approach to Space-Time Fractional Diffusion
    Bazhlekova, Emilia
    Bazhlekov, Ivan
    MATHEMATICS, 2019, 7 (05)
  • [9] Solution for a Space-time Fractional Diffusion Equation
    Liu, Qiyu
    Lv, Longjin
    PROCEEDINGS OF THE 2017 2ND INTERNATIONAL CONFERENCE ON MODELLING, SIMULATION AND APPLIED MATHEMATICS (MSAM2017), 2017, 132 : 180 - 184
  • [10] Space-time fractional diffusion on bounded domains
    Chen, Zhen-Qing
    Meerschaert, Mark M.
    Nane, Erkan
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 393 (02) : 479 - 488