The matrix sign function method and the computation of invariant subspaces

被引:35
作者
Byers, R [1 ]
He, CY [1 ]
Mehrmann, V [1 ]
机构
[1] TU CHEMNITZ ZWICKAU, FAK MATH, D-09107 CHEMNITZ, GERMANY
关键词
matrix sign function; invariant subspaces; perturbation theory;
D O I
10.1137/S0895479894277454
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A perturbation analysis shows that if a numerically stable procedure is used to compute the matrix sign function, then it is competitive with conventional methods for computing invariant subspaces. Stability analysis of the Newton iteration improves an earlier result of Byers and confirms that ill-conditioned iterates may cause numerical instability. Numerical examples demonstrate the theoretical results.
引用
收藏
页码:615 / 632
页数:18
相关论文
共 39 条
[1]  
Anderson E., 1992, LAPACK User's Guide
[2]  
[Anonymous], 1947, COMMENT MATH HELV
[3]  
[Anonymous], SOFTWARE ROUNDOFF AN
[4]  
BAI Z, 1993, CSD92718 U CAL DEP C
[5]  
BAI Z, IN PRESS NUMER MATH
[6]  
BAI Z, 1995, 9511 U CAL DEP MATH
[8]   COMPUTATIONAL METHOD FOR EIGENVALUES AND EIGENVECTORS OF A MATRIX WITH REAL EIGENVALUES [J].
BEAVERS, AN ;
DENMAN, ED .
NUMERISCHE MATHEMATIK, 1973, 21 (05) :389-396
[9]   A REGULARITY RESULT FOR THE SINGULAR-VALUES OF A TRANSFER-MATRIX AND A QUADRATICALLY CONVERGENT ALGORITHM FOR COMPUTING ITS L-INFINITY-NORM [J].
BOYD, S ;
BALAKRISHNAN, V .
SYSTEMS & CONTROL LETTERS, 1990, 15 (01) :1-7
[10]   A BISECTION METHOD FOR MEASURING THE DISTANCE OF A STABLE MATRIX TO THE UNSTABLE MATRICES [J].
BYERS, R .
SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1988, 9 (05) :875-881