The dual Minkowski problem for symmetric convex bodies

被引:42
作者
Boroczky, Karoly J. [1 ,2 ]
Lutwak, Erwin [3 ]
Yang, Deane [3 ]
Zhang, Gaoyong [3 ]
Zhao, Yiming [4 ]
机构
[1] Hungarian Acad Sci, Alfred Renyi Inst Math, Budapest, Hungary
[2] Cent European Univ, Budapest, Hungary
[3] NYU, Dept Math, Courant Inst Math Sci, New York, NY 10003 USA
[4] MIT, Dept Math, Cambridge, MA 02139 USA
基金
美国国家科学基金会; 芬兰科学院;
关键词
Convex body; Minkowski problem; Dual Minkowski problem; Subspace concentration condition; Radial Gauss image; BUSEMANN-PETTY PROBLEM; GAUSS CURVATURE; CLASSIFICATION; HYPERSURFACES; VALUATIONS; EXISTENCE;
D O I
10.1016/j.aim.2019.106805
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The dual Minkowski problem for even data asks what are the necessary and sufficient conditions on a prescribed even measure on the unit sphere for it to be the q-th dual curvature measure of an origin-symmetric convex body in R-n. A full solution to this is given when 1 < q < n. The necessary and sufficient conditions turn out to be an explicit measure concentration condition. To obtain the results, a variational approach is used, where the functional is the sum of a dual quermassintegral and an entropy integral. The proof requires two crucial estimates. The first is an estimate of the entropy integral which is obtained by using a spherical partition. The second is a sharp estimate of the dual quermassintegrals for a carefully chosen barrier convex body. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页数:30
相关论文
共 57 条
[1]  
Alexandroff A, 1942, CR ACAD SCI URSS, V35, P131
[2]  
Andrews B, 2003, J AM MATH SOC, V16, P443
[3]   Gauss curvature flow: the fate of the rolling stones [J].
Andrews, B .
INVENTIONES MATHEMATICAE, 1999, 138 (01) :151-161
[4]  
[Anonymous], 2005, MATH SURVEYS MONOGRA
[5]   A probabilistic approach to the geometry of the lnp-ball [J].
Barthe, F ;
Guédon, O ;
Mendelson, S ;
Naor, A .
ANNALS OF PROBABILITY, 2005, 33 (02) :480-513
[6]   Cone-volume measure of general centered convex bodies [J].
Boeroeczky, Karoly J. ;
Henk, Martin .
ADVANCES IN MATHEMATICS, 2016, 286 :703-721
[7]  
Böröczky KJ, 2015, J DIFFER GEOM, V99, P407
[8]  
Böröczky KJ, 2013, J AM MATH SOC, V26, P831
[9]   Minkowski valuations on lattice polytopes [J].
Boroczky, Karoly J. ;
Ludwig, Monika .
JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2019, 21 (01) :163-197
[10]  
Böröczky KJ, 2018, J DIFFER GEOM, V109, P411