Dirichlet splines as fractional integrals of B-splines

被引:6
作者
Castell, WZ [1 ]
机构
[1] GSF, Natl Res Ctr Environm & Hlth, Inst Biomath & Biometry, D-85764 Neuherberg, Germany
关键词
Dirichlet averages; Dirichlet splines; divided differences; B-splines; Dirichlet distribution; fractional integrals and derivatives;
D O I
10.1216/rmjm/1030539686
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Using Dirichlet averages we generalize the notion of a classical divided difference of a function by introducing a parameter r in R-+(k+1). The case r in Nk+1 is related to divided differences with multiple knots. We give an interpretation of these generalized differences in terms of fractional operators applied to classical divided differences considered as functions of their knots. The result is then applied to show that Dirichlet splines can be seen as fractional derivatives of B-splines.
引用
收藏
页码:545 / 559
页数:15
相关论文
共 15 条
[1]  
Badii F., 1973, TABLES LAPLACE TRANS
[2]   l-1 summability of multiple Fourier integrals and positivity [J].
Berens, H ;
Xu, Y .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1997, 122 :149-172
[3]   ON A-SYMMETRIC MULTIVARIATE DISTRIBUTIONS [J].
CAMBANIS, S ;
KEENER, R ;
SIMONS, G .
JOURNAL OF MULTIVARIATE ANALYSIS, 1983, 13 (02) :213-233
[4]  
Carlson B.C., 1963, J. Math. Anal. Appl, V7, P452, DOI DOI 10.1016/0022-247X(63)90067-2
[5]  
Carlson B.C., 1977, SPECIAL FUNCTIONS AP
[6]   B-SPLINES, HYPERGEOMETRIC-FUNCTIONS, AND DIRICHLET AVERAGES [J].
CARLSON, BC .
JOURNAL OF APPROXIMATION THEORY, 1991, 67 (03) :311-325
[8]  
DAHMEN W, 1986, CONT MATH, V59, P17
[9]  
Exton H., 1976, Multiple hypergeometric functions and applications
[10]  
ISAACSON E, 1966, ANAL NUMERICAL METHO